
>
\therefore

Chy Mibrary
 of the

Winibersity of Sorth \mathbb{C} arolina

Collection of , 2 orth Carolimiama CB. M8ひZs

> Sketches of Pioneer Baptist Preachers in North Carolina,

BY JOHN W. MOORE, STATE MISTORIAN.

no dount rouña meañs ot hope and amendment, but with the coming of our Lird the

Sect. V.
VI.
VII.

VIII
IX.

X .
XI.
XII.

XIII
XIV
XV .
XVI
XVI
XVI
XIX.
XX.

CHAP. XX.
ETAB.
Sect. I.
II.
III.
IV.

CHAP. XXI.
Sect. I.
II.
III.
IV. dead, whenever proper occasion required the
y. use of such divitue attestations to his divin-
VI. ity, but a uniform denial was given to all
VII.
VIII.
who came in malevolent curiosity to ask miracles at his hands. No human wisdom ou godliness can ever hope to rise to such heights of truth and eloquence as were embodied in the seemingly simple discourses of our Lord. They are as inimitable as the many parables they co: tain.

As our Lord saw fit to send the Baptist as his precursor and herald, so too the Saviour came as a preacher. Whether in the midst

Page 107 ibid. 110 111 112 116 117 ibid. ibid. ibid. ibid. 118 120 121
123
124
126
127
128
132
135
137
138
139
140

Sect. I Galilee, we find that our Lord was ever utilizing the opportunity to proclaim the unsearchable riches of his truth and grace. With such an exemplar to give dignity and importance to the calling, how can men sufficiently bonor and apprecia'e this great mission and embassy from on high. How can we over estimate the value and precedence of thase who came bearing the King's message of hope to a perishing world. What

OHAP. X
of the multitude thronging the temple at the time of the Passover, or on the plains of

II ona rofession or occupation can for a moment compare in importance with this, which not only promises peace and security in this life, but a blissful immortality in the next. In the old Jewish dispensation, the priest who interceded between God and his people was selected with many precautions. In the first place, he must be of the tribe of Levi. Next, he was only chosen from those descended from the first high-priest, Aaron. It was also required that he should be physically and mentally perfect. The slightest bodily deformity made him frerever a stranger to the precincts of the sanctuary. He was further carefully trained from earliest boyhood to a study of the Holy Scriptures and the details of all the solemn and magnificent ceremonies used in the temple. But once in each year the high-priest, after weeks of ceremonial cleanness, ventured to enter the Holy of Holies. The sacred and awful retreat was sacred and inviolate to all others. The man who ventured to intrude unlawfuliy too near its precincts was at once slain for his sin and folly.
While our Saviour has not thrown such mystery and privilege about any of his sac-
CHAP. raments, yet there should be many marks Sect. and distinctions to designate and dignify the holy office of a preacher of the gospel. Like the priest of old, he is largely the keerer rif the sacred oracles. If he is dumb, then his tneople will perish in their ignorance. If he is unholy in his life, he is doiug more to destroy the faith and hopes of his flock than all other evil influences combined. The pastor who, like a ravening wolf, creeps into the sheepfold to prey on those who love and trust him, leares a legacy of doubt and mistrust, which better men can hardly remove after years of toil and prayer. "Like priest, like people," said the Jewish prophet of old, and so it is in our day and generation. Every congregation which has been ministered to for a considerable time by one pastor becomes largely what he is spiritually and mentally. The pulpit is not only a guidepost to heaven, it is largely a means of education and refinement. A church, where a
and Min.
phours
hed of
200

- 203
$-\quad 212$
$-\quad 215$
scales,
$-\quad 216$
$-\quad-\quad 218$
$\begin{array}{r} \\ -\quad-\quad 220 \\ \hline\end{array}$

$$
-\quad-221
$$

- - 222

Spirit-
f Turthese * 223

- - 224
- - ibid.
- - 225
- - ibid.
- - 226
- - 227
- - ibie.
- - ibid.
- - 228
- - ibill.
- - 229

Sect. I.
II.

GHAP. II.
Sect. 1.
II.

115
IV.

Applicat

CHAP. 1.
Sect. I.
II
III.

CHAP. II.
Preparat ror otimen CHAP. IH.
and Mine
CIEAP. IV.
Fanmer a
Sect. I.
II.
III.

CHAP. V. V.
bath gives his congregation the results of his prayerful and elaborate preparation during the week, is bound to be largely blessed Page spiritually, and also serves to elevate and chasten the community around. How allleat 230 important, then, is it that the Baptists of $i b i d$. North Carolina should work and struggle to bring about such a consummation of affairs as would eventuate in each country neighborhood's having a strong, self-sustaining Baptist church, where on every Sunday they can meet and hear the word of God proclaimed in all its truth and simplicity. Wherever in such circamstances an able and godly man gives long years of faithful service to the same people, we find a commu nity blessed with every earthly advantage. They are not only prosperous in worldly macters, but add refinement to wealth, and over and above all things else, their trust and faith in God bring peace aud sanctity to every christian housetold.
in the preached word of God is the world's great hope of ultimate evangelization. Tue sects and societies that wait on the slow 231

$$
\text { - } 232
$$

- 233
- 234
- ibid.

> ibid.

$$
235
$$ work of self-instruption by means of the Bible and ohher religions literature generally make but small accessions to their ranks. In the Romish and other Pedobaptist. churches the reliance is on infant spriukling VI. as the means of comtiming their existence VII They keep up a show of life in this way, but alas! bow few arc the men and women thus inducted into the churches who really know and care for the religion of the Sariour? To the vant majority of such preople the Bible is a sealed book. Theil faith consists in the belief that a fés empty and unmeaning forms will be sufficient to atone for all their wanted and unprofitable lives. and that the absolution granted on confession to their priests will be sufficient atonement for all their sins. To such people the nev birth is all a myth. and the practical observance of the Sabbath a thing unknown.

To B tutists, consequently, their preachers are all important. We co .sist of churches made up of actual believers who have neither inherited or bought for gold their hopes of heaven. We hold that such views are only consistent with the system devised by our Lord and his Apostles. We are a people separate and apart from all others, and it 1 behooves us to not only cherish and provide
for our preachers of to day, but to recall and do reverence to the memories of those who have gone before us. With the hope that something of their virtues and labors may be recalled and preserved, these pages are fwritten. Like "Old Mortality" tenderly

CHAP, XVIIX.
In this qualit which is sold grains cover ness of each the metals, h ladium, merd and nickel,* The rest, on mi-metals. of malleabili in common and mineral
8. All the the exceptic drawn out i precedence thicker than
9. Wires found to be rises from th adding weig Count Sicki wires of one breaking.

-

\square

The tenacit even still le
10. Some degree of to the mech respect, sum

Beside th ties, which er, also, in t it may be sary repetit
restoring the effaced inscriptions on the tombs of those he had loved and lost, so would we now recall the names and deeds of the brave men who so largely helped to make North Carolina and this great repub lis what they are. With no desire to unduly magnify the importance of their holy calling, we would yet do justice to men who in sore privation, too often in danger, and always in the face of bitter and unrelenting opposition, found means to plant and nurture our earliest Baptist churches.

They found a land almost God forsaken and given over to the Devil and his agents. The means of grace witbin reach of our forefathers in the earlier Colonial days, were so utterly wanting or abortive, that in the few exceptions to the general neglect of all religion, for a long time only the Quakers of Perquimans and. Pasquotank sustained anything like christian worship. The huge territory stretching more than half way from the Atlantic ocean toward the Mississippi river had not a single organized church other than that just mentioned. How much Paul Palmer and his successors in the Bap tist ministry have effgcted to change the character of our people can only be understood by those conversant with the state of affairs previous to their labors in the land. The brave, true men who were so prompt to resent any foreign invasion upon their rights and liberties were from the beginning eager to bear the story of the cross. They sat, some weeping, and others smoking their pipes, as Fox and Edrmunson, the Quaker missionaries, told of the Saviour.

North Carolina early became a city of refuge to the persecuted Baptists of other provinces. While members of the established church were always contemptuous and bitter in their opposition in those early days, yet under the law they could find no pretext for actual persecution save in the very statute which was intended to prevent all violence and individual oppression. With a strange nockery of all propriety, the sticklers for conformity would swear out peace warrants against Bautist missionaries, in which, with all the soleranity of an oath, they deposed that these humble nen of God were disturbers of the public peace. That preaching Christ and hinu crncited led to violence, and therefore somplig magis-
 mockery of justice and required tlx preacher to give bond for his good behaviox and peaceful conduct toward the people. Some smilingly complied with the wretched pro- an five thick. All er, pal, zinc, elongs.
led $s, e-$ ession ztained emical
(with nay be to take ire not

Is, are This aadually ients of which without

ead has
, a high applied , in this

1 qualiach othblances nneces-
wision of anllaw and justice and gave bonă as required, but others were made of sterner stuff. These told the magistrates they had violated no law, human or divines, and that they wonld cheerfully abide in jail as long as their worships saw fit to limit. Such men, like John Bunyan, made their prisons lively with hymns of praise and sermons delivered through the windows.

It was thus amid much tribulation that the pioneer Baptist preachers of America made good a lodgment for their faith in the domain which was ere long to burgeon out into the world's most imperial republic. Often despised and neglected by the people they came to bless and save, they had the grace still to persevere in the good work. As the years went by, they saw the horizon of their hopes ever broadening and growing more luminous to the eyes of Hope. God was preparing for them greater things than the boldest had dreamed of. Not only was the time close at hand when all their pains and penalties should be swept from the statute books; they were not only to rejoice in the fulness of that religious liberty which they had advocated and prayed for so long; they were also to suggest and establish, by means of their example, the controlling features of the American civil polity. Baptist freedom and democracy became the prototypes and models by which was conThagh fically light structed the mighty fabric of the United erties not o'States. And thns once more the stone re-

These cl jected by the builders became the head of the corner. the theferent peric \square or eleple comon very peculiar mability, stals are luced in es place, Some of vapour, e a very emperaatilized; 170° of d in the etals, no the free er conTheir ties that stroyed. e shecif propory of phlosiston, they were accounted for by assuming that the metals, during the process of exposure to air at a high temperature, abandon their phlogiston, which, it was supposed, unites with the air and renders it hhlogisticated, and consequently unfit for supporting the combustion of other inflammable bodies. The hypothesis, however, could no longer be maintained, when it was proved that the metals, so far from losing weight, become heavier after the operation; and though various attempts were made, by modifications of the theory, to accomodate it to this fact, yet none of them can be considered as having been at ail successful.

The theory, which is now almost universally admitted, as best explaining the phenomena in question, though suggested by the hints furnished by preceding discoveries, was first reduced to a systematic and consistent form by Lavoisier. The metals ${ }_{2}$ accorde.

[^0]CHAP. XV
ing to th changes t absorptiol becomes should su the fact, : satisfacto A certain able circl metal is gas whi farther ; plication and the n idence t change v an establ quence o called by the form which ar posed to I shall e

The 1 not the s ro differe

1. Sor air at th deprived new mel which ha true, as 1 extremel moisture
2. Oth crable in when he: converte have bee process
from Massachusetts in the midst of a New and heat England winter's direst hardships, so fled the

Sketches of Pioneer Baptist Preachers in North Oarolina.

BY JOHN W. MOORE, STATE HISTORIAN.

> Memoir I-Paul Palmer.

CHAPTER FIRST.

A little more than two centuries have elapsed since the first permanent settlements were effected by Englishmen in North Carolina. Such a period in human history seems very short at best, but it has been long enough to bury in oblivion a multitude of men and facts we would gladly preserve and transmit to coming ages. The men and women who, in the middle of the seventeenth century sought homes and refuge in Albemarle, came under different auspices from all the other plantations in America. Not even that famous band of pilgrims, that made Plymouth Rock so conspicuous in baman annals, afforded much amalogy to the early scenes enacted in Cấrolina. No king or governor was consulted for permission to enter the paradise Aradas and Hariot bad so eloquently described. Many thousands had Jeft their homes in Great Britain and the continent of Europe with the hope and expectation of enjoying complete religious liberty in America. Such immigrants as a general rule landed in Boston and Jamestown. At both places they found a stern and jealous inquisition as to their religious opinions. When the new citizen agreed with Puritanism in Massachusetts and the Thirty-Nine Articles in Virginia, all was well, and such an immigrant was received with open arms. But if it so happened that neither Puritauism or Episcopacy claimed him for its own, then alas for the unhappy dupe who had as it were jumped from the frying pan into the fire. Charles II. and his bigoted successor made life hard enough for the Baptists, but Gov. Berkeley surfassed even these persecutors in the sternness of his policy. The poor deluded victió of false hopes was at once told to leave Virginia and that with all possible speed. To aroid severe punishments, the exiles moved on to the unknown wilderness and sought a nid the heathen Indians a refuge bis christian countrymen had refused. Like-Roger Williams expelled
dergo the nce of the stallic body performed, Fhat this is readily and mmon air. ler favouright in the that of the an even go e mere aptate of gas, factory evture of the herefore, as n , in consess has been axide. For I by reasons e, has proing pages, metals are with respect
tmospheric ch has been ese, and the anly ones thers, it is the air, but peration of
ut a consider, tin, \&c. 1 are slowly ding as they stances, the ion of light pens, chisf?
men and women who first began the work of making North Carolina a home for civil-

Jy, with somi ple, when pr In other mẹt phenomena,
3. With tl called perfec ladium,) are and of an inc of this kind, going any ch gen, and are proved by th! former, the w. dispersed into ful discharge, leaves, the me
4. All met more readily (ny cases a me bly by the act bright inflam 1 ready been sh sumed in oxy

These are t order that b . phace, it is onl aty between os light (and per: other cases, th acquires oxyg Of these sour ones, are wa: containing on
I. Water g ifest a powerf those which : The newly di rapidity, whic the change is : ampie, when ; jar over mers
ized people.
How many of these Baptist people, who thus came to Albemarle before King Charles II. granted away the territory thu* setrled, is not now known. Rev. Dr. W. H. Whitsitt, in his able and suggestive sermon delivered in June, 1888, at Wake Forest Cullege, gave some vary valuable hints as to this matter. He quoted the Rev. Morgan Edwards as to his declaration that as early as 1695 there wese individual B tptists in the colony. Richard Knight, another historian, affirmed that they wrre to be found there five years earlier. He then argues from the liberality of North Carolina goverument as to religious toleration that nothing prevented these Baptists from forming churches. The declaration of Rev. Jemuel Burkitt, in his history of the Kenukee Assuciation, that Paul Palmer was the founder of the first Baptist churrb in the Provin e, and that Shiloh, this rhurch, was formed in 1727, has been long taken as definite and conclosive on the subject. But many things support Dr. Whit-itt tin his belief that Raptist churches were in existence even hefore then. The following extract from a letter wititen by Rev. Mr. Blair, a missionary sent out by the Bishop of London and the Engli.b tociety for Propagating the Gospel io Foreign Parts, shows conclusively that as farly as in 1704 Baptitt evaugelists were travering Albemarle and baptizing their converts. Mr. Blair słys, in speaking of the religious sects then to be found in the colny:
"A third sort are som thing like the Presbyterians̋, which sort is upheld br sunieidle fe lows who have left their lawful employ. ment, and preach and baptize through the conntry, without any manier of orders from anv sect or pretended church "

Tr is was in strict keeping with the usual Episcopal scorn and ignorance touching the
Baptist people. This Mr. Blair pretends that he does not even know the name and classification of the creed which was winning converts and e-tablishing itself in a region where ere long it was to number nine tenths of the people in its fold. Of course, these unknown missionaries of 1704 were Baptists, and surely if they were baptizing men and women. they were also planting churches as they went. But these churches were composed of a people very unlettered and humble in the social scale. Their records, if they kept any, have been all lost, and thus it is that we have by John
xVIII. rexam. t flame. arkable results. ve been nd pals of air metals under-proxyair, is By the oment, powerto thin lour.
re still In ma-invisiibits a as al-
con-
t. In take affinn and = In metal ound. only
maning, to al air. with a eneral, for exverted rolve

CHAP. XV
Comer's Journal of a trip through Carolina in 1727 the authentic assurance that a church of the Baptist faith and order was at that date in existence, with Rev. Paul Palmer as its pastor. Like Dr. Whitsitt, we are fully persuaded that various otherBaptist churches were then to be found in North Carolina, but they were so disunited and wioply separated that no effort was made to preserve memo rials of their existence. We know too that before the reformation wrought in the latter part of the eighteenth century that much latitude was allowed in the creed and prac tices of those Americans who called themselves Baptists. The open communion sentiments of John Bunyan and those of his school had their legitimate results in opening the church doors to members who made no profession of religion. The famous prophecy of the great merchant and preacher, William Kifien, in his reply to his Brother John Bunyan that the disregard of Bible baptism as requisite to participation in the Lord's Supper would eventuate in a disregard for all the ordinances, had long been verified in the Quakers. The alliance between the Quakers and Baptists had been very close 'in Albemarle, and no doubt a portion of their disregard for both of our church ordinances had been largely infused in the sentiments of their compatriots. Although the English and Dutch Baptist churches had found great benefits arising to the individual congregations from their joining in the formation of associations, the American churches had long foreborne to follow such salutary example. The old Baptist love of independence in each separate church, and the fear that such an alliance might eventuate in impairing this autonomy, had kept them struggling in separate orbits and largely inefficient and helpless from their total want of sympathy and cooperation. The best and strongest of the city churches might support its pastor and do muclit toward the feeding and clothing of their own pauper members, but beyoud this their christian charity Lad no extent. Some might aid a deserving young brother in his preparation for the ministry, but such cases were like angels' visits.

But let us of the present day thank God that a season of better things was at last to dawn on the world. Twelve churches in and around the city of Philadelphia sent up delegates A. D. 1706 and formed the first American Baptist Association. With this formation of the Philade phia Association,
case, we saturated ior stage ich chem-amenclaived from Thus we black anc hat can be

At some

proposed ntageously metal (still נ each are deutoxide, second, or any metal that at the oxidation. respect to a oxides of ulting salts This has zed (or for dized metThe latte: can only be fferent bas1 compound state of ox: = should be in metallic ill be more f acid than tte and subuired in our continue to jus quality ; green muri.

Besid the unior ble, also combusti and char interestin
I. THE numerou: by certair with one of gas, tak small deq ably with several re
II. TH_{H} have been compound ty called s lic oxides, phuretted hydro-sulf l l

1. All th in their me In order to be brought very mode mixture of parts of cos_{j} tube, comb plished. $]$ sudden ant combinatio from the ex fluid is liben mixture, an acid. The ter from th dized by the

[^1] 1808.)
there came as it were a new/lease of life ano power to the Baptist communities thus united in the bonds of love and duty. The old fear and distrust of men as to each other's good faith had nurtered and sustained all the tyriranies both temporal and ecclesiastical which had cursed mankind with their misrule. It was a common belief that the people were incapable of self-control, and therefore kings a d nobles should hold them in subjection. The Baptists followed the Bible and the early christians in keeping up the people's control of their own church, but they feared the possible action of sister congregations in case a league was formed for the execution of some common purposes. The results of the Philadelphia coalition were so speedily seen to be grod and useful, that many wise men in other sections wished their churches to do likewise, but the old Baptist conservatism wisely waited and watched to see how time would tell on the new experiment.
Among the churches which constituted this same Philad+lphia Association, was one situated in the Welsh Tract of the Province of D. laware. This congregation had long been recognized for its intelligence and devotion to all good works. Hearing of the hose and disorganized coudition of Baptist :ffairs in North Carolima, the y sent out Rev. Paul Palmer as a missionary some time about 1720. These missions of love and mercy were common in those early days of the American Baptist As*ociation. We find that not only were able divines sent out as aids and advisers of the seattered congregations in the white settlements, but the Indians also came in for their share in these early manifestations of christian zeal and bedevollence. Mr. Palmer was a native of Maryland, but was baptized into Baptist fellowship by Rev. Thomas Owens, then pastor of the Wrl.b Tiact congregation. He was ordained to the full work of the ministry in Connect cut. After service in the churchen of New Jersey and Mary land, he came to North Carolina. His home for the sub-quent years of his life was in Perquim ans county There on the beautiful shores of Aibemarle Sound he began and ended his labors as an evangelist among our plain and unassuming fortfathers. He found the harvest ready for the sickle. A people brave and patient had after many struggles and some bloody diorders triumphed in their efforts for sume show of freedom and autonomy. Wilr and insidious British agents had long purplesed them with schemes of interference in their religion and trade. The Engli,h governors and their coradjutors in the General Assembly were struggling for
result from s are capathe simple hosphorus, b other, an
re neither composed combines n the state case, in a t remarkid having
sulphur . 1st, the proprieith metale of sulbe called

I tin, are, sulphur. te bodies usible, a Thus a or of 40 na glass accomting in a During appears f elastic k of the Phurous 1 the latally oxipounds,
sactions.

Mr. Da gen, an

In th appares from th tute of metals

London came continuous orders for the enforcement of the navigation laws. But these wise men of old wanted neither a religious establishment nor any such restraints on their commerce, Mr. Palmer found them in comparative freedom from both of these sources of former strife and discontent. With his young wife thus far removed from the scenes and friendships of former years, he began his life-work in North Carolina.
of its hydro-
cease to be urs different d, are destich different Mr. Kirwan has givi
 to be considered as merely approximations to the truth.

The same metal, also, is, in some instances, susceptible of uniting with different quantities of sulphur, and of affording compounds characterised by a different set of properties. Thus the compound, which consists of $62 \frac{1}{2}$ iron and $37 \frac{1}{2}$ sulphur is of a dark grey colour ; has little or no lustre ; is magnetic ; and easily broken. But 53 parts of iron combined with 47 of sulphur form a compact substance, of sufficient hardness to strike fire with steel, and having so much lustre as to have been often mistaken by the ignorant for gold.

Metallic sulphurets can only be partially decomposed by heat; and though this assertion appears to be contradicted by the effect of roasting these compounds, yet it is to be considered that the metals, when heated with the contact of air, absorb oxygen, and thus lose their affinity for sulphur. The sulphuret of one metal may, in many instances, be decomposed by another metal. Thus when sulphuret of mercury is distilled with a proper proportion of iron filings, the sulphur passes to the iron, and the mercury comes over in a metallic state.

Concentrated sulphuric acid,* with the assistance of heat, acts upon metallic sulphurets, and is converted into sulphurous acid, which, being volatile, escapes. Metals, which, in their separate

[^2]Sketches of Pioneer Baptist Preachers in North Carolina,

state, were c

its action, af When dilt instead of hy It is chiefly produce this a farther pro Concentra the diluted : decomposed ed, and sulp! acid contains cause the ac

Sulphuret oxygen, and y.luric acid, state of sulf formed, whi a strong aff conversion i of copper, a taining a fu tion of air a
2. In gel ides for su inctals are lrought in' ry , and ma calcd sult furding sir the wave already intimated, much of shur dim: the labors of Paul Palmer in North Cang they hold

These mere sulp they yiedd phuric ac fectly oxis lina, is derived from the journal of John Comer. This Baptist evangelist traversed the Province in the year 1727 and met the subject of this memoir personally. In the brevity of his itineracy, we have only short notes as to the various points visited and no attempt at detailed narrative, either touching the history of the past or the general condition of the churches in that period. It sulphur r was through the publication of these notes
3. Sulf of travel that we can now safely affirm that the meta Mr. Palmer had succeeded so far as to es-

* Vau loh., This ancient and revered christian
XVIII. sible to pounds, drogen. ur that ntaining vent.
is; but c acid is sengagIl nitric ned, be-

ly attrace

 for sulss to the f iron is as either then the alphurets ron conoined ac-their oxh certain they are i, mercubr may be able of afty for sulgen which
y from the minimum, c and sultheir perce , and the
th a few of at it unites,
cit. 256.
body still maintains its existence and integrity, and has thus been recognized as the When its hydrogen reduces tl ably aque The viold ing atmos occasione nation ma oxides wi will be de

Fixed low oxide
VII. 1 bustible t store it t contained expose t revived, hibiting without
(b) M lution of iron filin and the : el's hair ular figu
(c) \mathbf{T} phurette who wis may con ed by Jo the Philo
VIII. form, by
IX. W riate of g and, whe Cassius,

* The ni previously and afterw orivin and nucleus of the vast array of similar organizations in our State.
Dr. David Benedict, in his Baptist History, intimates that Paul Palmer got into some trouble which militated against his usefulness as a minister of the gospel, but he does not specify what this trouble was. This was a source of grief to the author of these sketches until, in his researches in the lately published Colonial Records, a discovery was made as to the nature of Mr. Palmer's offence. It seems from the old court records of Perquimans cuunty that in the year 1720 , he and his wife Joanna were indicted for aiding in the rescue of a negro prisoner from the custody of the officer who held him under arrest. It must have been simply an ebullition of misplaced pity and sympathy for one in distress, for the record shows that David .Richardson, then Attorney General, refused to prosecute the case, and the defendants were dismissed from court without even so much as paying the cost.

While the foregoing circumstance would indicate a rash and impulsive nature, it by no means involves any degree of moral turpitude beyoud Mr. Palmer's failure to re member the oft-repeated injunction of our Lord for his servants to obey the powers that be. This constable, ho wever humble a representative, still embodied in himself the majesty and sanctity of the law. Though the preacher and his wife might be sure of the falsehood and injustice of the charge against their African neighbor, still they were wrong in th-ir choice of a remedy. It is.far better to endure oppre sion than inaugurate rebellion, while there yet remains a hope or possibility of rectifying the evils inflicted. It was ill-advised, too, because Mr. Palmer might be sure that the enemies
of his faith would never stop to explain the extenuating circumstances, when in triumph they told how the Baptist missionary had bəen indicted as a public malefactor. But with all these suggestions of worldly wisdom, he could still enjoy the high satisfaction of knowing that his sufferings were the result of no.selfish promptings. If he was numbered among malefactors, his Lord and Master had undergone the same ignominy. In his choice of a field wherein to labor for the Lord, Mr. Palmer found a host of s, should be men, who would view his advocacy of Bap- fluous acid, tist faith and practices with anything but, favor. Perquimans was the very center and
posed ; the pxide, and and probded state. surroundbise that is ilar explaof metallic ury, which
d, the yel-
rtain comld, and ren of gold,* arcoal, and sold will be state, exage ensues re of 212°. e dilute sogas from o reduced, of a camxhibit reg-
uting phosthe reader, milar kind, e, publish's paper, in-
a metallic
f nitro-muple colour ; nowder of stallic salt,
largely dilu few pieces of the colot will begin waslied an tate of Cas solution of acid.
X. Gol of gold is real solutis the gilding it protects
XI. Su humid wa with heat
XII. 7 pelling an are very ter of hi rold. I of the A_{i} lransact alloys of add that poses, h loyed wit some kir in any rc 20 be ow quantity bout $\overline{12} \frac{1}{2}$

The parts of gold, wl pure my using th an cqua
nucleus of both Episcopal and Quaker influences. The strongest congregations of both these sects were to be found where he began his work of evangelization. The strongest imagination would fail in its endeavor to depict the scorn and surprise of the one party. and the cool indifference of the other. The men of the Established Church were too much under the control of Edward Moseley to offer any show of real persecution; for that patriot and statesman, while warmly adhering to the dogmas of his church, was still ever the advocate of religious freedom. He was too powerful both in the General Assembly and Church councils, for any open infringement of the spirit of the charters; so all the vexation of.the people of his faith expended itself in petty schemes to abuse the unwelcome intruder in the public mind.
The people of Albemarle had been too often disg usted with the Established clergymen, for any real attachment to have been formed toward them and the faith they represented. Some, of these English preachers, as the Rev. John Urmstone and others, not only neglected the sacred duties they were sent from across the seas to fulfill, but also led shameless and iminoral lives. Urmstone was notorious for his many vices. He was repeatedly arrested in the streets of Edenton and punished by the court for his drunkeuness and profanity. That such a man could be permitted for long years to receive the bounty of benevolent Englishmen, shows to what a low ebb the morals of the people in both hemispheres had descended. A candid statement of affairs requires that such disagreeable truths should be made kaown, but it must not be once imagined that there were no real and devoted christians in the Epi-copal clergy. There were many who would have died to maintain the integrity of the Protestant faite, but the fatal effects of the restored Stuart dynasty on the public morals had not yet been succeeded by wiser and tuiter courses.

It was thus that Paul Palmer and his coadjutors found the people willing and eager to receive the messengers who jame with promise of better things. Taking 1725 as the year of the first real Baptist evangel in North Carolina, it seems almost incredible bow fast their influence spread over the Province. Among Mr. Palmer's earliest converts was the Rev. Joseph Parker. He was the main stay and support of the Evan-

P. XVIIX

el with a become recipitate hen well precipimixiny a muriatic

the oxide

 the ethepplied to hts, which pld.e dry and digested,

ons of cu-

 fis'. They 44th chapry, article Commerce iilosophical pecting the owever, to many purelted or alar fact, that ar defective his appears very small tals only arious effect. number of ure. Thus, ns 22 of the pure gold, alloyed with
SECT. IL.

I. Platina,

 contaminated b and, in fact, is in no other pla until about two grey silver ores brought from t the ore of platir our than iron, been contrived Platina ;) but appears to me cated by Mr. F nal., It is unt the metal may among other pII. Platina

1. It is a wh exceeding it, which may be
2. It is extr ever, by the bl
s. It is not tion of heat an to a circuitous composed by tric acid. $\mathrm{T} t$ drive off the a of platina at t oxygen. Th colour, and io bined with 93 4. Platina other metal b

* A process scribed by Des \dagger Two piece with a kind of nently united!
roL, II.
gelist, and fögeetherr, the greater portion of eastern Carolina and southeastern Virginia. The secoud church organized under their labors was at a point in Bertie but now Hertford county, just outeide the future village of Murfreesboro. 'This was long known as Parker's Meeting House, in compliment to Mr. Parker, its first pastor. He removed from Pasquotank and dwelt the remainder of his life on the farm just in the rear of the Chowan Baptist Female Institute. Joseph Parker was never a bri liant orator, nor was he very wide in the range of his acquirements. His chief trait was his indomatable adherence to whatever opinion he first adopted. He could never be persuaded to take part in Association or Convention, and so long as he and his son, Rev. William Parker, lived, they kept by their influence the Meherrin congregation in the same attitude. Although every other Baptist chureh in the commonwealth had joined the Sandy Creek or Kehukee Association, these men of iron wills still, with their single church. stood aloof and would take no part in the great work that Burkitt and his colaborers were, with God's help, carrying on. It is a singular coincidence that after the lapse of a century and a half we see Rev. Hersey B. Par ker, who is the direct descendent, five degrees removed from this ancient worthy, reviving in our day the very same crudities and mistakes.

Paul $\mathrm{P}_{\text {tlmer }}$ lived long enough to see a great advancement effected both in religious and political affairs under the wise and gentle rule of Gov. Gabriel Johnston. A mighty host of settlers came pouring in from every direction, and North Carolma in a few years had a population four fold greater than when the scutch ruler arrived. The Baptists had made a start in their great work of evangelizug this and other American Provinces, and trom thence on ward their career has been unbroken. Though men would yet shudder as they recalled the horrors of the Tuscarora massacre in 1711, still the Lord's work of saving the souls of those who had committed the bloody crime, must be at least att-mpted. The hardy settlers kept pushing on in the wilderness towards the settiag sun. To such people also the gospel must be preached. This matter of planting and sustaining churches in the Colony had been a source of continual struggle and content ever since the time when Col. Daniel as Governor of Albemarle had induced the General Assembly to pass the law had been promised repeatedly by King
5. It is and oxyge they would come o America they should and oxyg ϵ have in Carolina the fullest religious liberty. this solu ed on or vessel; is obtair 6. T oration. is decol reducer
7. T precipis acter, P separat thus ob platina. 8. M nor by : contam:
9. It present paler b :
10. 1 precipil compot so, it fo ding to muriats id have prismal reddist ful coq
11. gen, w also by which gold.
12. also w: Chowan and West Chowan Associations siderat number their adherents by the myriad. The
13. The most aenurn brightiy on te aitars he

This Vastry Act was directly in opposition to such a promise. It provided perempto rily that every parish should elect twelve Vestrymen whose duty it should be to raise by taxation out of all the people money with which to build an Episcopal chapel, and then to levy $\$ 150.00$ more each year as a salary for a rector of the same faith and order.

The Baptists and Quakers said, with truth and justice, that the building of such a chapel and the salary of such a rector were no concerns of theirs. They had a church of their own and a pastor of their own to support. Let the Episcopal people build their own house and pay their own rectors. That it was an outrage to thus pillage men of their hard earnings to sustain others who were too often viler than the heathen Africans they essayed to convert and baptize. The law proved abortive in most of the counties by the dissenters choosing men of their own creeds as Vestrymen. Of course, these would make no levies for church building, nor would they employ a lector.

To such men the coming of Mr. Palmer was as a most grateful dispensation of Providence. They heard the story of our Lord's passion with streaming eyes and hundreds were added to the Baptist fold. The new county of Bertie, which included all the North Carolina territory between the Roanoke and Chowan rivers, became a center of influence from which missionaries proceeded to evangelize the more remote settlements. By and-by the Episcopal chapels of St. John and St. Luke in Manney's Neck found themselves almost deserted. The handy men and women, who were peopling a wilderness, instinctively turned to the faith and forms that centuries before had won the bearts of the Galilean shepherds and fishermen. How long the man lived, who had thus come from afar to labor in a field of which he knew nothing. is now forgotten. But his name is yet fresh in our memories, and the labors he endured still bear their fruits in the region where two such great christian organizations as the f potash, and minishes conbles.
ina is muriate
per-sulphate 155 parts of o with cold wat
ereated so long ago, and a great people de-
light in doing honor to the name and memory of Paul Palmer. He served the Master in his day and generation, and is now enjoy- quiring ing "that rest which remaineth to the peo-ishings ple of God." the salt is renuered much more insoluble.

When the super-sulphate is heated for some time, at a temperature exceeding that of boiling water, it loses still more acid, and is changed into a hard grey mass. When this is removed from the fire, and boiling water poured upon it, a lemon yellow coloured powder is formed called Turbith Mineral. This substance rejuires for solution 2000 parts of water. One hundred parts consist of 10 sulphuric acid, 76 mercury, 11 oxygen, and 3 water.
VI. The nitric acid dissolves mercury, both with and without the assistance of heat. At the common temperature, but little nitrous gas is evolved by the action of mercury on nitric acid; and the acid becomes slowly saturated. The solution is very ponderous and colourless; and yields, by evaporation, large transparent crystals. The solution does not become milky when mingled with water. Pure fixed alkalis give a yellowish white precipitate ; and ammonia a greyish black one.

But if heat be used, a brisk effervescence arises, occasioned by the escape of nitrous gas, and a solution is obtained, in which the metal is more highly oxidated, and the acid is in less proportion. When this solution is poured into cold water, a yellowish white sediment is formed; or, if into boiling water, an orange coloured one. Both precipitates consist of nitric acid, with a great excess of oxide, forming an insoluble sub-nitrate of mercury.

If the last mentioned solution be boiled with a fresh quantity of mercury, the newly added metal is taken up, without any discharge of nitrous gas, the metal becoming oxidized at the expense of that already dissolved.

When the nitrate of mercury is exposed to a heat gradually raised to 600° or upwards, it is deprived of water and of most of its acid, and reduced to an oxide, which has the form of brilliant red scales. This substance, commonly called red precizitate, is termed more properly the nitrous oxide of mercury.
VII. Mercury is the basis of a new fulminating compound discovered by Mr. E. Howard. To prepare this powder, 100 grains (or a greater proportional quantity not exceeding 500) are to be dissolved, with heat, in a measured ounce and half of nitric acid. The solution being poured cold upon two measured ounces of alcohol, previously introduced into any convenient glass vessel, a
mode
white and t
action
lecter
dried try, squires, who reaily cared very little for Christ as their mediator, were yet devoted Chnrchmen. Utterly empty of faith, hope and charity, they were yet ever ready and of ru willing to cut the throats of others who bottl failed to conform to the ritual and canons of the r the English Church. Such men formed a large majority of the Colonial Legislature.
V. It can be tasios iunagined what a cruel and inexcusable system of laws such men would enact. Their treatment of the Quakers would have disgraced the Turks. When a stranger came in their midst, the law required that the rector of the parish, or some other public officer, should see such person and inquire of him as to the nature of his religious opinions. If it appeared that he conformed to the Thirty-nine Articles, or subs was a Presbyterian in good standing, he was
T allowed to remain and find a home in the Colony of Virginia. But wo unto all others! If they came by way of the seas, the captain was required to carry them back to the port from which they sailed. In cases such as those, where men and women came southacce ward from settlements of Maryland aṇd Pennsylvania, they were forthwith expeiled from the borders of the Old Dominion, with fearful penalties as the price of their return. A few French Huguenots, under the express orders of the Crown, were left unmolested, for many of them became members of the Episcopal congregations.

Chap. XVIIY.
is excited. A e of the liquor, the cessation of mmediately coland cautiously h. The immet is liable to the acid adheres to 1 of light. From owder are obage 214.) This gentle heat, or
ig mercury, is ance were placon, unobserved, rted into a brillnto a heap, and posed, a globule e powder into a hole reduced to 199.)
id, but may be eaffinity. Thus oth well dried, oxide of mercuThis compound ne components, te an insoluble
s its weight of weight of alcothe fixed alkalis ange, and afterare composed.

Calomel, ate with abor peatedly sub ly insoluble, muriate by timony of th

In calome cent. of oxy determinatic Fourcroy ar tive view of

Calo

Corr
IX. The out the addi gas.
X. Merc and if these ry loses its lead, and an gular prope powers of thi have already

By comb dized, acqui gold and sil agitation in tration of th ies, in prom XI. By cd compounds. nite, and for

In the lapse of time this fierce and rigid exclusion of Baptists and Quakers was relaxed from the fact that such people were too wise and self respecting to seek homes in such a community. Rhode Island, New Jersey, Pennsylvania, Maryland, both the Carolinas and Georgia were ready and willing to give homes and fellowship to all who in good faith came in their midst. To these Colonies flocked the persecuted Dissenters, and Virginia was left to enjoy for a season all the honor and glory due such faithful and discreet sons of the Church. Lord, had they not cast out in thy name all these vile and deluded schismatics? Were they not secure from these insidious agents of sin and heresy? Alas, no! However cruel their statutes, Baptists of other communities resolved at length to rivk life and all things temporal in their efforts to redeem a noble people from such mista太es in religion and policy. We are told by Rev. Dr. R. B. Semple in his history of the Virginia Baptists, that when the first of their evangelists began to labor in Virginia the State and Church authorities had them in such utter contempt that they said it was useless to notice these men. That they were so weak and obscture that no po-sible harm could arise from the people's hearing what such fanatics had to say. It was after these humble Baptist evan gelists had won the bearts of hundreds of the people for the Master, that. the strong arm of ecclesiastic wrath wis invoked. How long and nobly those Virginia Baptists wrought and suffered is one of the world's most heroic epics. They were the loving allies and friends of Thomas Jefferson, Patrick Henry and of James Madison in all their great and protructed labors in securing religious liberty for their State and nation.
At the very beginning of these Virginia church troubles the subject of this memoir, the Rev. William Sojourner, along with many of his flock, came to North Carolina for refuge. All the old records and traditions speak well of Mr. Sojourrer. It sounds almost like a romance to recall the facts connected with him and his church at Burley in Isle of Wight county. As early as 1714 the Burley congregation, being destitute of a pastor, wrote such letters to the Baptists of London, that two men, Robert Nordin and Thomas White, were ordained and sent out to aid these American petitioners. The two young men thus departing on the long and perilous journey of that era, no doubt felt many a swelling joy in their souls over their consciousness of giving up home and all its comforts to serve the Lord. Before
te murithen reis nearorrosive the tes802 ,) of

10 her This that of omparaIomel.
ne, withoxygen
metals; merculgam of the sinordinary crcury,
ily oxiThus lized by ig illusof bod-
distinct odies u r by fu-
sion, and ed cinnat vermilion celcbrate fourth vc vol. ii. trated so monia. left undj and final Journal,

The Dr. Wo followin
I. Rн muriatic of ammo colour, have be portion metals i 1. Le the solu state of with ver dissolve tro-mur portion tieth th The dr! rhodiun and the dium m der, am
borax i any det
the long and weary days had gone by which were consumed in sailing from London to James rivel, Thomas White sickened and died. It was a dark and mysterious providence, and Robert Nordin, no doubt, grieved long and sore over the death of his companion. But the sailors wrapped the cold form of the dead missi nary in a hammock and thus gave him burial in the depths of the ocean.

It seems that Robert Nordin preached unmolested and with much success until his death Dec. 1st, 1725 . On the 30th day of April, 1727 , Richard Jones was ordaintd and chosen as pastor to this same Burley congregation. But the establishment of the Baptist church in Prince George county and the active evangelism of Rev. Casper Mintz, along with pastor Jones, stirred up wrath in the high places. The Episcopal parsons and their lay strikers said these Baptists were stirring up the world with their haraugues and were thus liable to be punished at law as disturbers of the public peace. Magistrates who would hear a simple sermon of loving exhortation to perishing sin-ners-breathing peace and forgiveness of injuries in all its extent would then see brutal ruffians interrupt sucli a discourse by a shower of rotten eggs, would see these same men beat and almost drown the inoffensive man of God. Such a magistrate neither sought to restrain the assailants, or to punish them afterwards, but in sublime mockery of all humau justice, would send his sheriff or constable with orders to arrest the injured preacher as a public nuisance and disturber of the peace. Some of the meek and geutle brethren would so far comply with these uiserable Dogberry justices as to give bond for their keeping the peace. But others weie made of sterner stuff. They told their wicked judges that they had violated neither the public law nor the public peace, aud would therefore give no boud but rot in their jails before their giviug countenance to a miserable perversion of law and justice.
Many of them made good all such brave utterances. Like Paul and silas, they for long months aud weeks made the old jail houses musical with their hymns of praise. Great crowds of indignant and sympathetic people gathered and were preached to from the grated windows of the prison. It seemed as if the gospel was never so powerful as when God's servants were thus bearing witness amid danger and suffering on his account. Many hundreds professed to have found peace as they thus stood and heard the gospel proclaimed from the windows of Zhe jall.
rap. xVIHz
huret callin pigment long been bed in the Dictionary, ng concenuret of amhich, when en orange, Nicholson's
ngenuity of tina, by the
na in nitroby muriate le degree of e acids that iron, and a , also, other
mmersed in resent in the (ut drying it) which will in dilute nieted, add a out one fifgentle heat. llladium and 1 by alcohol, ion the rhoblack powof the ore. black; with infusible by , by arsenic

To prepa lowing proc per, and 50 phate on an muriatic aci per and its poured into orange colo that it can s ed of
II. Copp heat, and aff phate of cop water. (b) alkalis. Th on adding pt per, a precip kali, is re-di (c) The suly of this salt ir acquire a co its acid on an oxide of according to

The sulp describes a

Bǔt all were not made of such stern stuff as lo really enjoy the privilege of bearing such testimony to the truth. The Rev. William Sojourner had succeeded Mr. Jones in the pastorate of Burley. He and a large proportion of the congregation grew weary of the struggle and contention, and resolved to leave their homes for the peace and qui etude of North Carolina. Edgecombe was then a new country. On Kehukee creek in the latter bailiwick, Mr. Sojourner and his colony halted, and there established the famous old Kehukee church. This region in that era was very different in its aspects from the county, Isle of Wight, where their old homes were. All the region bordering on James river was in that age thickly settled and possessed of many social appliances. Mr. Sojourner and the little flock he led found the late hunting grounds of the Tuscarora Indians covered by a vast unbroken forest. A few families had congregated at and around the village of Enfield where the court-house for Edgecombe county was located, but in ' 1740 the region selected as the future residence of these christian refugees was still in its primeval condition. About thirty miles southward was the spot on Contentnea creek whereon was built the famous Indian fortress which was stormed and captured during the late war. As all the hostile Tuscaroras had left North Carolina and found new homes in the lake country of New York, Mr. Sojourner and his colonists had only a few stragglers of tha: bloody tribe to fear in their new homes. True, it was that occasionally a solitary man or woman was found murdered and scalped br these vengeful spirits, but 'Thomas Blount, the friendly chief, who still lingered in Bertie by degrees captured and slew the last of these murderous vagrants. Rev. Joseph Parker and his coadjutor, Mr. Wingfield, had no doubt been heard at Enfield and elsewhere in Edgecombe proclaiming the truth as held by the American Baptists, but no church had been established nearer than Sandy Run in Bertie. This church by a strange coincidence came into existence in the same year that saw the advent of Mr. Sojourner and his people. It was not a great distance thus across the Roanoke river between a regular Baptist chureh and the Virginia colonists in Edgecombe. There was, no doubt much social intercourse between the old and new Baptist denisons of that fertile region, for no bridges were built across
the folof copthe sulit with he coptash is d of an trongly ompos-
boiling a) SulIved by bonated Thus, of copthe alolution. solution ill soon ives up n ; and nposed
t, aiso, ommon
ere numerous ferries.
sulpt The Rev. William Sojourner found a forgree midable obstacle to the spread of his Baptist

II
with Burgess. This latter was a clergyman of read in all the catalogue of his brethren of the cloth by Rev. Charles Earle of Chowan.
copp Both of tbese wise and godly men were affor greatly adnuired and trusted by the people, and their influence was widespread and ever for good in the land. The very fact that Messrs. Earle and Burgess were so different from the generality of those who had come as Episcopal missionaries gave a greater interest with the people. It had not been expected after their experience with Mr. Urmstone and others of his kind. that any Church of England clergyman really cared for the souls and salvation of thei: flocks; but here? were men whose piety and rectitude no man * could doubt. It was thus hard work for Mr. Sojourner to hold bis own with such a rival close by at Enfield. There has ever been a love of pomp and spectacle in the mind of man. This has given the Romanists their greatest hold upon the people. So, too, with their daughter of England. She has retained just enough of the shows and vestments to avoid offending good taste. The Church, too, has ever been in America a great aid to penple whose great desire is to rise in social consideration. We constantly hear the worldlyminded making sneering remarks as to the want of refinement in the Baptist and Methodist churches. They are like that proud scribe of old who asked if any of the Pharisees had as yet believed on Jesus Christ. We hear these his modern imitators often testifying their derotion to their church, but alas the name of him who died in such unspeakable agony on Calvary is rarely on their lips. That phantom they call "The Church" absorbs all the love and enthusiasm of such believers, while the Virgin Mother and Mother Church serve a like purpose with the Romanists. What is such folly but cheating God of the devotion we owe to him? What is the church worth to any man or woman beyond affording him a means of testifying faith in the lamb of God who taketh away the sins of the world? The churches are, no doubt, great instruments of grace and help us on in our efforts to do what is right, but let us never forget that after all they are only congregations of weak and erring mortals., They are God's means of converting the world and keeping in everlasting remembince the Great Shépherd and Bishop of our souls.

CHAP. XVIII.
the oxide. A
comes covered A is still more the solutions of bonate of lime er. This sub-
d; and nitrous ting from this ing with tin. of copper, a lue powder is er combined ist hydrate of dro-oxide of a heat below pe; but still pmposed, its aning, in the be brought
on copper; pper is oxiad generally te salt crys1 are readily Proust has
sECT. vif.
The wat pathetic in ing, and ag By dige metal, it is per being solution. nouring it and is con down an of
VI. ${ }^{\text {W }}$ of vinegar commerce ly of a sut tion, it fo water.a combing
VII. prussiate is obtaind pigment. of copper VIII. three par of sulphu tion, a b that prod IX. Ar copper. in a phial beautiful fine blue X. Cc

Sketches of Pioneer Baptist Preachers in North Carolina.

BY JOHN W. MOORE, STATE HISTORIAN.
Memorr II-Rev. William Sosourner.
CHAPTER TWO.
In looking back through the long vista of years which have elapsed since the Rev. William Sojourner lived and labored on earth, we are struck with astonishment that so many of the most enduring elements of our faith and polity originated in the time of his stay in the commonweaith. Nurth Carolina, at that period, was in that plastic condition which is most favorable tor the reception of religious and political truths. In the gross and inexcusable neglect of their duties, both by the Lords Proprietors and afterwards the Crown, the people had been left almost entirely to their own devices in religious matters. It seemed that of all the host of preachers of the English ecclesiastical establishment, only a few men, who coyld find no employment at home, veu tared over as guides to heavenly places. The people were quick to sée that most of these $m \dashv n$ needed reformation of life as much as they did. It was only about this very year of 1740 , which saw the advent of the Burley colony, that Gov. Gabriel Johnston asd Mr. Ed ward Moseley succeeded in obtaining real religious guides. The Bishop of London, who claimed North Carolina as a portion of his see, at last sent over the Rev. Charles Earle to serve the churches of Edenton and Perquimans. Bertie, then the most populous county in the Province, was supplied with a rector in the person of the Rev. John Alexander, while Edgecombe rejoiced in the presence and services of the Rev. Mr. Burgess. All of these gentlemen were highly acceptable and useful in their labors ; but in Mr. Earle there was a culmination of social and christian graces. He added piety and zeal to his eloquence in the pulpit. He also gave such an example in his daily walk among bis people, tnat all could see how much he was concerned for their souls. All three of these ancient divines lived and died at their posts, and left issue as mementoes of their virtues. Such men of course gave a great impetus to the lagging fortunes of Episcopacy in North Carolina. They did much to atone for the sins of their wicked predecessors, and had all their successors in 1775 possessed the same wisdom and influence, their church would have escaped its shipwreck and prostration.

1 of sym.

 by warm-> gs of the hof copy held in merely s oxygen lis throw
the fumes rdegris of and part-evaporasoluble in acid, and rts
solution of precipitate chett as a e solutions
nixture of th one part combinabrightness,
o-oxides of m together acquires a ren:le heat, Salem, of the first instalment of the German
fords seve arts of life sect styled by themselves "The United Brethren." These Moravians were in many respects the counterparts of the English Copper, w with abou most useft also, the Prince R_{1} Quakers. Count Zinzendorf, eight years before, had begun his wonderful system of missions. Lay brothers, who labored daily for their own food and clothing, were sent out in many foreign parts to bear to other peoples the gospel that had wrought so great a change in their own hearts They, too, were soon to establish themselves at Salem, And when white and kaleidoscope of the age.
The Rev. George Whitfield and also the two Wesleys were stirring the British people into a wondrous enthusiasm with their new Methodist societies. Ever and anon echoes came from New England repeating the story of how the Rev. Jonathan Ed-
Iron ha wards was animating the dry bones of Conof polish. to the sar more duct out into w a wire on! a weight of Iron is point is ab the followi
I. 1. 1 air is mois guage, $r u$ change g^{\prime} takes plac small frag dergo a projected iancy. T and is stil of

The sa is brough gregational coldness and apathy. The longendurung and widespread religious blight which had come upon all English-speaking people as the result of the wicked rule of the two last Stuart kings, was at last yielding to the influences of a livelier faith. The Baptist preachers had never intermitted their work of exhortation for a higher standard of devotion, and at last God was answering their prayers.

Only twenty years had elapsed since Paul Palmer had come in Albemarle, when Mr. Sojourner and his little band of Burley exiles arrived on the banks of Roanoke river, but a great work had been accomplished in that short interval. The cluster of churches, soon to join in forming the Kehukee Association, were organized and at work extending the bounds of Baptist influence. Many people have expressed astonisbment that the Established Church of the Province so soon succumbed in the struggle for supremacy; but no student of English history need wonder orer such a fact. It was, as the Right Honorable Joseph Chamberln, the famous M. P. for Manchester, lately declared, the people knew that ever since the days of King Henry VIII., this State Church had been found on all occasions the enemy of popular liberty and privilege. All the great franchises extorted from the Crown had been won with the bishops and clergy in solid array against such movements. And the church, says Joseph Hume, is to day what it was in the times of Hampden and Pym. In every great struggle, when the
common and iron. ot-metal; brass, the per form, b, Similor, tin, and sun-metal. beautifully m-metal.
h degree e beat out It is much be drawn sucb that upporting 7.6 to 7.8 . is melting ertics are
when the nmon lanised, this nscly hot, Thus the rging, unon filings, able brillk colour, 100 parts
nited irors mbustion

BECT. VII
be formed
sulphate o tions have ed as rem
VIII. 7 soluble in compositi ate of amr of succina es to heat, tity of lin second red black oxic tation of a od of estin or in any c
IX. Th on iron, an calico-prin double des or of lead boiling ac lead in a n

This co other salts minimum, the latter calico-prin

X . Iron
A few iron casionally solution is ure to air.
XI. Iro characters itheir comp - ter, if in su (b) A mix (accurately
union exhi whis vol.)

British Parliamenc nas been called upon to widen the influenceand power of the people, the spiritual Lords have been ever found opposing such boon and aiding selfish monarchs in their efforts to resist the demands of the House of Commons.
Then, too, the habits and bearing of the Established clergy had raised barriers between them and the great boly of the population. The sons of wealthy and titled families were generally educated with the view of their assuming holy orders long before any evidence was afforded that even piety was theirs, much less the experience of an actual call to preach the gospel. It seemed like mockery to hear such a candidate avow at his ordination that he felt assured that God had called him to fuifill such duties, and yet was ready to mock at the mere mention of the new birth in Christ. Hundreds of such youths were supplied with curacies and rectories by the bare dictum of some rich landlord who mocked at and despised the very natne of religion. The English papers of this same week in October, 1891, te:l us that the Marquis of Aylesbury bolds eleven such presentations while the still more notorious Lord Lonsdale had no less than fortytwo. At the bidding of these two wicked and woridly aristocrats, thousands of christian people are thus forced to receive the men who ars to minister to them in holy things.

Such were some of the many causes of the amazing success of the pioneer Baptis: preachers in North Carolina and her sister Provinces. Congregations were formed in the short interval of time already mentioned from Currituck as far west as Johnston county, and all of them were the fruits of missions sent ont from Shiloh, Meherrin, Sandy Rou and Ehnkee churchee. In ai! the region south and west of Roanoke river, the Rev. William Sojaurner was the leading spirit in this great work of evangelizing a destitute and forsaken people.
The dieastrous battle of Culloden, fought on the moors of Scotland in the year of our Lord 1745 , led to a great emigration from the highlands of that country. The gentle heroine, Flora MeDonald, and thousands of her compatriots, found homes along the upper ranches of the Cape Fear river. The nucleus of this settement, now known as Fatetteville, was called Cross Creek in that day. It does not appear that the Baptist missionaries effected much among them until a much later period in our history. on of irn Neither Mr. Sojourner, nor any of his cler-

2 and oxy-prepara-ommend-
mass, inouble deof succinrecipitate th exposall quan. d , and the low as the e precipiady methhat metal,
lowly updying and ained by te of lime 1, also, by itates the

like its

 is at the on. It is dyer and onic acid. r, and octal. The by expos-unds, the ortions of , and waato flame. fsulphur, soment of he end of n of iron
and sulpt from a st compoun preserve best aday diluted a ly decom riatic aci

In the in the nal Mr. Hatı compour the other be callec guished super-su sulphuri gen gas. and give One hus

The
tongue; so the Scotch settlements failed to participate in the great evangel of the pe- bwing heat, riod.

Just west of the Baptist congregations of Johnston county began the settlements of the Scotch-Irish Presbyterians. These brave, thrifty and devoteduchristians were so well supplied with preachers of their own, that missionaries rather sought ont the waste and destitute regions. They were not so anxious to proselste their brethren of other persna sions as they were to earry the word to those settling in the "region and shadow of death." Indeed, all that we know of Mr. Sojourner:s traits as a man and a christian goes to show the amiability and delicacy of his sensibilities. Sooner than contend with the bigoted and intolerant Churchmen in Virginia, he had shaken the dust from his feet as testimony against them, and came for peace to North Carolina. He was not a man for controversies of any kind. However devoted he may have been in his adhesion to Baptist sentiments, yet he never grew restless or unhappy when he realized how many men and women were ignorant of, or scoffers at, the truth of such a faith. His charity was boundless and unfailing. He no more limited God's saving grace to the narrow confines of his own sect, than to some race charm out from all nations.

Mr. Sojourner was enowgh blessed of God to be permitted to ste the wide diffusion of the trath as he beld it while still alive in the flesh. He sawwand beard of new churches continually being added to those already in existence, but like Moses on Pisgah, he was denied th \Rightarrow privilege of seeing them join a holy league for purposes offensive and defensive in carrying on the great war against the Devil and his agents. The Baptist churches of North Carolina had not yet obtained the consent of their minds and souls for concerted action. Philadelphia and Charleston had seen great things accomplished by means of the Baptist Associations bearing their names. Their missionaries were earnestly persuading our people to surrender this ignoble and unworthy distrust of God's people, evinced by such fears of their good faith. Surely churches acknowledged and confessed to be independent could always have the right of withdrawing from such such a league if it transgressed its charter. How, then, could there arise any danger to the autonomy or integrity of even the weakest congregation? On
hur. The nd may be hur, this is n gas with ned, rapidric or mupgen gas. as well as Proust and y so. Two th a larger, former may h is distinzuret. The in diluted etted hydrohe magnet, ilute acids.
prtions; and bertics in the mbination of the different c. \&c. The be determinthe iron and mode of artaining the on under exllic state.
of essential
differences slight diffe properties

Cast or c carbon, and various pro least in the carbon and bonic oxide earthy mat After this I considered bination.* with charce portion onl the proper all time.

Juced by owes its imbago. ; oxygen, d on the lack, and ining, the m of ca:les to the ense slag. h may be n in comn contact imall pro:ntirely of des a good deal harder, yet it may sur ...e. aticu. sy union with a still farther quantity of carbon, it loses altogether the property of welding; is rendered harder and more compact; and forms the fine cast steel. Steel, therefore, though like cast iron it contains car:bon, yet differs from it essentially in being destitute of oxygen and earth.

Another combination of iron and carbon, which is a true carburet of iron, is the substance called flumbago, or black-lead, used in fabricating pencils, and in covering iron to prevent rust. By exposure to the combined action of heat and air, the carbon is burned off, and the oxide of iron remains. When mingled also with powdered nitrate of potash, and thrown into a crucible, a deflagration ensues; and an oxide of iron, equal to about one tenth the weight of the plumbago, may be obtained by washing off the alkali of the nitre. From recent experiments of Messrs. Allen and Pepys, it appears that pure plumbago, when burnt in oxygen gas, leaves a residue of oxide of iron amounting only to about 5 fer cent.; and that it gives very nearly the same quantity of carbonic acid, by combustion, as the diamond and cbarcoal. Whens intensely heated in a Toricellian vacuum by a Voltaie battery, Mr. Davy found that its characters remained wholly unaltered. Neither could any evidence of its containing oxygen be derived from the action of potassium. (Philosophical Transactions, 1809.)

[^3]Sketches of Pioneer Baptist Preacbers in North Carolina,

BY JUHN W. MOORE, STATE HISTORJAN,
I. To ol under that lution, ev: thice or fi dryness. in a solut casioning bonic acis and, after black flus or three c

Anothe Nicholson state of pl

1. Its c
2. It is
3. It is and ham: gravity is
4. In it
5. Nici oxidation. of air, it : netic. II trately iṣ dinge of b Klaproth: comes bl: 78 metal into boili drate of sufficientl or platine als.
6. The yior to wl in the usu
dition; and also on the missionary efforts started $1, y^{f}$

Memoir III-Rev. Shubal Stearns.

CHAPTER ONE

The latter half of the eighteenth century was crowded with events which were of signal importalice to the human race, but to the eye, and minds of many christian observers, there was a visible decline in all the elements which constitute the noblest trats in religions and moral character. The influ ence of four kings had reacted disastrously on the three leading nations of the world. Luuis XIV. in France, Cbarles II. and his brother, James II. in England, and the great warrior, Frederick of Prussia, had each and all led such lives and professed such sentiments that millions of men and women were more or less debarred through their corrupring influence. The low seusualism and disregard for truth in the lives of the first three were supplemented in the ambirisn and atheism of the great Gerinan. It seem-d that all the benefits won through the plety aud heroic constancy of Martin Luther in his struggle for human emancıpation, had bat resulted in unbelef and contempt for all things in religion and morals. Preachers and priests vied with men of the world in their hives of shameless disregard for all the restraints incident to their holy functions. They could be found not onl? re echoing the doubts and sneers of Hnae, Gibbon and Voltaire, but too often were also profane, adulterous and openly drunken in their lives. With such religious guides and civil governors it was not for a moment a thing to be wondered at that great masses of the perple came to distrust and despise all who advoctted a higher morality aud a closer walk with God.

To read at this day the sirictures of the Rev. Silney Smith upon the Methodist movement uuder the Wesleys and Whinficld

Carey and Fuller, we can faintly realize something of the utter worldiness of the great body of the clergymen of that period. Mr. Smith was even better than the wajority of his brethren of the cloth and surpassed them as much in the purity of his life, as he excelled them in intellectual endowments. in the nsuan motes.
D. XVIII。
ually sold ; the soagain, for 1 boiled to dissolved by its ocain no cardryness ; weight of le for half
ichter, in hetal in a nd tin. when hot ; s specific
t states of ee access still magand modth a slight ording to ion, it beRichter, of en thrown is the hyx.) In a fithout adpld, silver, rfect met-
little infes polarisy

BCT. XII.
II. Tho temperatui tion.

When k zinc becom a crucible, inflames; light oxide ed wool. er volatile has been es consist of 8 in a retort assumes a 88 parts of mum, Gay or about 19
III. Zin volves, dur gas, when
A stream o has been fo platina wire This hydro by a proces blende, or tube, whic red-hot, the is produce hydrogen, surface of $:$ when recen impregnati

The solu tals. This not precipi stated; but of igniteds
is state of enmity to Goa. A century earlier, Baptists were found disregarding all the bloody penalties proclaimed by kings and prelates against the promulgation of their principles and were winning sonls and suffering therefor in every part of christendom.

Since the advent of Will am and Mary upon the Britioh throne, a great degree of freedom frum pains and penalties had been enjoyed, both in Great Biitain and America. This to eration, as it was called, of a faith so hatpful to the average Pedobap:ist,
at a low to ignits fusion, own into suddenly hite and to cardno longplass. It inds it to d to heat gen, and znsists of : maxioxygen,

which e-

 and the e. metal. fig. 34,) in of the preperty. oblained c, called porcelain dd, when gas that buretted ad on the f burned e of thislar crysolution is variously ive 61.24
had also served to disarm and neutralize the Baptists in their traditional activity toward extending the limits of their faith and practice. In the midst of such torpor and forgetfulness of duty the Baptist people were startled like the Jews of old by two young men who were to prove themselves worthy successors of that eloquent eremite who, suventeen centuries before, had the honor of

Mr.
water,
cid.
IV.
lence.
delique
V. I
drogen
evapora
may be circum:
vaporat
viscidit
VI:
ing the
super-a
of lead
evapora VII.
tions, al
compou: zinc filit
VIII. phur. phur co: impregr time, th is probal
IX. 2 is of a w
some m:
gree of 1
X. Zi
metals.
tioned in
proclaiming our Saviour's advent. As John the Baptist found a world lost in sin and forget ulness of God, so too did John Wesley and George Whitfield, Protestant and Romanist alske were sleeping on their posts, and beyond the efforts of the handful of fainful Moravians, the great work of the world's redemption stemed to have come to a complete standstill. The two young students who, amid their careless compeers at the great Englinh University, had given their hearts to Jesus and his cause. right nobly redeemed the pronrises and pledges made ea h other in those halcyon days of their youth. Many lands and many peoples heard these woorlrous beralds pleading the cause of the new birth in Christ and a closer walk wi h God.

It was under the magic utterances of Whitfield that Shubdl Stearus was a wakened to a sense of his acceptance with Christ. The name of this Baptist worthy had been long known and spelled by the people of our State as given above, but some authors give him the title of Shubael. It is too late however, to alter that which has been so long established among us, and we shall therefore continue to speak of him as did our forefathers and designate him, as of oid, the Rev. Shubal Stearns. He was born January 6 th, 1706 , and was reared in or near the city of Boston, in the state of Massachusetts. He bad beein baptized according to the practice and ritual of the New Eng land Puritans, but under the heart-*earching discourses of George Whitfield first really knew the Lord. For a time after his conversion he ramained a membrr of a New Light Congregational church, but grew dissatisfied with their views It w as thus that he cam \Rightarrow for mental peace to join hime elf to a Baptist flork that was ther. recently allowed to exist on the part of the Colonial authorities, simply because of stringent orders fiom London imperiously commanding the public authorities to relax in the hard hearted mea-ures they had before exercised toward
hity for sulwers of sulss. Water, , after some itate, which ead. It has t a high de-
f the other been men-
A similar of nitre and

uret of zinc

SECT. XIII.

META

Bismuth brilliant pla 9.822 , but is the hammer, can it be dra
I. Bismut Fahrenheit; distinct crys
II. When with an oxid olent heat it but, with thd hales in the ies. This o a yellow tran which we ar 89.5 bismuth
III. Sulpt engaged. A is changed is
IV. Nitri part and a h : muth, broke It is decomp precipitated sists of oxid This pigme1 by sulphure stances in g
V. Muri prived of w affords a so erly called
VI. Bisn ink. The
had resulted such a state of affairs that litale true and vital religion was left in the community. An outward adhesion and conformity to the Established Church had soon taken the place of all the zeal and enthusi-
asm of the men and women who constitused the congregation bronght from $b=y$ ond the seas by the good ship May Flower. In the cold and lifeless formalities of the New England people there was a large reproduction of the hateful Phariseeism so sternly denounced by our patient and merciful Saviour. So overweening and intolerant was this spirit that even the wisdom and piety of Jollathan Edwards could not avail in distrming their jealousy and resentment against every man who presumed in any way to differ in religious and political sentiment from those of this Yankee Sanhedrim. All of Dr. Edwards' fame for splendid talents, consecration to God and burning zeal in bis cause would have amounted to nothing in their sight, and he, like another Roger Williams, would have been expelled fiom their midst but for two reasons. The first of these. was that he differed only in a few vital points fiom their own Westminster Confession, and the second was that good William III. had secured from the British Parliament the enactment of the famous statute for toleration in all parts of the empire then under its control.
The New England Baptists had undergone unsprakable pains, penalties, robbery and humiliation at the band; of these witchburning, slave-trading, hard headed successors of Cromwell and Pym. Their system of government was virtually a theocracy wherein the preachers and ruling elders were the lords of the land. They were as annipotent in the General Curt of Massachusetts Bay as in the church conferences where they sat as moderators. The age, infirmities, piety and eloquence of Rev. Obadiah Holmes weighed nothing in their view when they learned that upon the 1 equest of a sick friend and brotker in the Lord, this Rbode Island Baptist divine had presunted to come by request into their midst, and had actually prayed, preached and otherwise worshipped God in the house of his host. For no other infraction of law human or divine, Mr. Holmes was seized, along with him whose hospitality he was sharing, and both were condemned to undergo the extreme penalties of horrid Puritan statutes. The venerable and beloved shepherd of the Rhode Island Baptists was beaten at the public whipping-post until his back was a mass of
f broad avity is , under le; nor at 476° metals, covered nore vivessels; side exold bodeat, into ih, with parts, of id is dismainder To one e of bis. allizable. stance is It conric acid. changed pg sub.
vhen deed, and improp-
pathetic hat docs
not act on this solutio drogen.
VII. B als, and f bility. O sists of ei thrown in It is from ter's into t deed, is it

Bismut tility; ev This effe bismuth
I. ANT natural ca $\% 5$ antim native su ulous tar of nitrate mixture 1 and the d little fat. lie found be separe may be f sulphur
II. Ar of antime plated ol
III. I ing, in tl ized, and IV. I at its on air, it cl
blood and bruises. 'Thougn smiling and rejoicing under the cruel infliction that he was counted worthy to suffer like his persecuted Lord, the good man was unable to lie upon
 h's back and lay for weeks hovering between life and death in consequence of his injuries.

Whrn Mr. Stearns became a Baptist, the day of such bitter intolerance seemed a thing of the past. Even Rev. Cotton Mather was heard speaking words of christian sympathy and affection toward his brethren of the Baptist church in Boston. The long arm of the British Parliament had compelled the General Court to stop in its violence, but ages yet were to elapse before these men of Massachusetts got the consent of their minds to conform to the great. American rule of freedom and equality among men in their worship of God. It was full fifty years after
Thomas Jefferson had secured such a blessing for Virginia and the Republic, before Massachusetts could be induced to accept in its entirety, this most sacred and inaliena ble human privilege. John Adams told the men who sided with his great Virginia rival, that his people were prepared to suffer through war and pestileuce before surren dering their claim of power over the public consciences. He did all he could to prevent the insertion of this the noblest feature in the Federal Constitution, and its adoption was secured in the face of his opposition, displeasure and protest.

It can, then, well be imagined that life amid a people animated by such a spirit was embittered to such men as gentie Shubal Stearns. He and bis young wife were full of happiness in their new-found faith and a great desire and prompting were thrilling in their hearts touching their duty toward God and their fellowmen. Mr. Stearns soon yielded to his sense of duty and began exercising his gifts as a preacher of righteousness. He was born in the year 1706. His n father bore the same name with himself, and his mother had been a Miss Rebtcca Larriford before her marriage. He was just thirty-nine years old when he joined the New Light congregation which had originated under Whitfield's reaching. For six years he continued a member of this organization. But in his study of the Bible he was forced to the conclusion that nothing therein could be found to justify infant baptism or any other substitite for immersion. He then could no longer abine where Mr. Whitfield had left him, but in 1751 was immersed into membership of a Baptist church in New

Ap. xvill. tten with retted hy-
f the metkable fusil. It conin. When ling point. smuth enwhich, in-
of its ducproportion. usion near
hops, is a portion of c state, the ht of acidd one third tion. The t crucible; sed with a ravity, will hich it may sulphuret lings. The

[^4]led regulus le, and of a ss, on coolbe volatilatmosplere e access of f the metal.
I. Cobali be purchased three times i moderate pri

To obtain mends, that t ated with or powdered ch is to be mixe reduced. T its weight of and acidifie: Wash off the acid. This of iron. Ew the solution ide of coball before dired
the Rev. Wait Palmer. This congregation was located at a place called Talland in Connecticut. During the same year Mr. Stearns was ordained to the fuli work of the gospel ministry by a presbytis wasisting of tide pastor, Mr. Palmer, and Rev. Joshua Morse. Three years after this important event in bis life, Mr. Stearns devoted to active evangelism among the people of New England.
In this work he found many things to harass and discourage him. The same Phariseeism that had opposed and denounced the labors of Jonathan Edwards and George Whiltield, rose up to confrout him. As they had shut their doors and forbidden the uses of their houses of worship to the older evangelists, so fared it with gentle Shubal Sitearns. These servants, of the Lord, like himself, were forced to use the hills and fields as places for meeting the multitudes that focked in thousands to hear the new version of that ancient gospel of peace and love to all mankind. But the missionary spirit began early to prompt Shubal Stearns to go into early fields. He and his brother in-law, Rev. David Marshall, concluded that it was their duty to go to the South or West, and amid the new settlements proclaim the glad tidings in their possession. "Thus it was in 1754 Mr. Stearns bade adieu te his New England home and friends and started on the mission which was so abundantly to bless our people of North Carolina.
ch may re with ed, at a
recom-detonhth of e mass cobalt thrice imum; potash. n nitric oxide filter he oxlux, as
II. Cobalt has a greyish white colour, inclining somewhat to pink. Its specific gravity is 7.7 ; it is brittle and easily reduced to powder; is not fusible with a less heat than 130° of Wedgwood ; and, when slowly cooled, may be obtained crystallized in irregular prisms.

By exposure to the atmosphere cobalt is tarnished, but not oxidized to any extent. In an intense heat it burns with a red flame; but, if pure, it is not easily oxidized by a moderate temperature. Its oxide is of a deep blue, approaching to black. This, from the experiments of Thenard, appears to be the first oxide. It may be obtained, also, by precipitating the nitrate of cobalt with potash. The precipitate is at first blue, but when dry becomes black. It dissolves readily in muriatic acid, giving a solution which is green when concentrated, and red when diluted. Its solutions in sulphuric and nitric acids are always red.

When this oxide is exposed to the atmosphere, it gradually absorbs an additional dose of oxygen; and becomes olive green.

Sketches of Pioneer Baptist Preachers in North Oarolina.
by JOHN W. MOORE, STATE HISTORIAN. Memoir III-Rev. Shubal Stearns.

Chapter tho.

Before continuing the narrative of Shubal pious © $\$$ tearns' adventures and labors in the South, howeve it is proper to say a few things concerning gen enc also, of mixture

Acco: ide cons the condition' of affars in that portion of North Carolina which became the scene of his subsequent efforts in this life. During the admiurstration of Gabriel Johnston as Governor of the Province, a prodigious in flux of immigration began to pour isto the Piedmont region. Two great tides flowing steadily southward from Pennsylvania, and northward from the wharves of Cbarieston, brought in each year thousands of men and women seeking new homes in the wilder ness. They were composed of many differ ent creeds and nationalities. The steru and were like Eueas' ship afte
Rari nantes in vasto gurgite.
III. C puted to it is owir
IV. \dot{T} ic acids; sympathe may be d of nitric a and dilut solution : plied, the periment

Amid a prople thus constituted there was of course a variety of creeds and social customs. Lattle communities had each for it self its church and traditional festivals. The prevailing sect among them all was that of the Presbyterians. The peculiar tenets of Calvin and Knox were thus become potent in the American forest. Among these people it was a rule to bring along with each company of immigrants their pastor and ruling elders, and among the first houses built in such a settlement was one for wor ship and then one for the education of their children. The harsh and bloody treatment the German Lutherans, the gentle Moravi ans, and lower down the country, the scotch highlanuers came in troops to possess the land. A few settlers came from Eugland and Virginia to the same region, but they were like Eneas' ship after the storm-
(these people had undergone at the hands of the Stuart Kings of England had made their system of religion a thing for which they were educated to believe it was their duty to die whenever its defence required such a sacrifice. With all its apparent austerity

* Philos and gloom as viewed by other people, it was
\dagger For so sult Mr. \mathbf{F} sophical Ts
still to them what the Temple of Jerusalem and its magniticent ceremonies had been to the Jews of old. They loved it better than life, and were ready for martyrdom as any season rather than renounce fealty to its support.

CRAP. XVIIX:
gas, and a
in the open lly becomes
The peroxA with a cois insoluble, ed with oxyis incapable, g vitrifiable
f the frotox
e bottom of to the state
nerally im. spects that n.
tro-muriatof forming: , of zaffre, four parts e of soda; n with this heat is ap-
This extrunk and
bmena, con:
d. (Philo:

SECT. Shubal Stearns, Daniel Marshall and their families found the region peopled that they
branches with a so heated,
I. MA

stance,

 with a la mixing t ball, and tenth of : at the bo ed charc for one hII. TH
ing in its
I. the case of Mr. Stearns we have suca abundant testimony of his unusual gifts beth in mental and spiritual development, that we are not astonished that the careless maltitudes he found in his new home were stirred to the depths of their souls. The tes timony of Rev. Dr. Robert B. Semple of Vir--inia, who wrote his valuable history of the Baptists of his state in A. D. 1810 is enough of itself to enable us to understand why such

> Alanemeas
remarkable success waited on bis efforts. He was described as a small bandsome man with great impressiveness in his words and manner. But the secret of Mr. Stearns' re markable sway over all audiences lay in the use of his voice and eyes. The oue was full of melody and soul-reaching power, while the other almost realized the reputed charm possessed by some of the animals over their feathered victims. "His enemies," says Dr. Semple, "would sometimes be captivated by his musical voice. Many strange things are related of the enchanting sound of his voice, and the glance of his eyes had a meaning in every move."
selves. th-y were persuaded that larger use-
fulness was promised them further south. Under the influence of their preaching, a church was at once formed on sandy Creek. Multitudes flocked to hear this new gosp 1 of love and freedom they were proclaiming, and very soon six hundred names were enrolled as members of the new church. They had come iato North Carol:na in a little company which numbered all told but sixteen souls, but in a marvellously brief season this small nucleus of hope and faith had expanded into so many other congregations, that in 1755 the new churches they had formed united in forming the Sandy Creek Association.
Shubal stearns and Daniel Marshall must have been, both of them, preachers of unusual powers to have accomplished such wonderful thing\$. We must remember that the scene of their labors was by no means destitate of all precious religious privileg 9 s. Not only had the Established Church sent rectors to the same region; but numerous Presbyterian and Latheran ministers were established whith reach of these same settlements is generally bdients; and lcined flints. ground anch louring sublass.
black subnanganese, tained, by s it into a arcoal, one inch deep th powdere exposed,
t and shinIt is very velous preacher for moving the emotions and melting his audiences to tears. The
brittie, ai Wedgwo in consec iron. I brown po cession g When sive sbad Grange, i viz. the w

The su (effected sists of 80 the air, it

The rea ganese. 1
The bla which is e : purposes, 60 jaits o
III. Th trous. T water onl ide.
IV. Th distilled al distilled w
V. The acid; but, uion of the (see chap. throw dow: air, becom
VI. The nitric acid oxide, a li solved.
VII. T when mele the blow-p
most exciting stories are told about the piercing glance of his eyes and melting tones of his voice, while his appearance was that of a patriarch."
This last author quoted was, like Dr. Sem ple, a Baptist author and divine, who was If great distinction himself for his abilities both as an author and a minister of the gos pel. We may therefore safely rest in the a-suranfe that his picture of the pioneer preacher was in no wise overdramn. Being his cotemporary and personal acquaintance. we can safely conclude that the extraordibary imputations of power in the pulpit were in no respect overdrawn.
A nother witness as to these great and un usual gifts in the keeping of Mr. Stearns, was the Rev. Tidence Lane. This man, who was to b-come so honored and useful as a Baptist preacher, was a bitter foe of our pe culiar articles of faith and practice at the time of his first meeting with Shubal Stearns. "Upon my arrival," says Mr. Lane, "I saw venerable old man sitting under a peach tree, with a book in his hand, and the people gathering about him. He fixed his eyes upon me immediately, which made me feel in suca a manner as I had never felt before. I turned to quit the place, but could not pro cred far. I walked about sometimes catch ing his eyes as I walked. My uneasiness in creased and became intolerable. I went up to him, thinking that a salutation and shaking of hands would relieve me; but it happened otherwise. I beg $4 n$ to think that he had an evil eye and ought to be shunned; but shunning him I could no more effect than a bird can shun a rittlesnake, when it fixes its eyesupon it. When he began to preach, wy perturbations increased, so that nature could no longer support them, and I sank to the ground."
To cold and sceptical minds this may sound not only incredible but the raving of one who was of unsound mind. The grace of God has ever thus appeared to the average Greek, foolishness, just as it was a stumbling block to the Jews. But if we can trust truth of history at all, things just as.marvelous are related on the higbest and best authority of the effects waiting on the sermons of Whitfield. Dr. Armitage, in his Baptist history, has preserved the following instance of the great preacher's influence over his hearers

AP. XVIII.
at of 160° ; but only quantity of a blackish mes in suc-

h succes-

 our. (La pt oxides, c solution b. It conxposure to te of man-substance, 4 for other surcroy, of
in the niddition of white ox-
gen when adantly, if
muriatic one porzed state Alkalis ure to the
issolve in It with the de is disof soda, fected by pr fiame,

Colum longing to brought fr fusion with was decor alkali with diluted nit This acid there can ole in nitri with the sub both soluti coloured p dro-sulphy

This me is chemis tantalite, b curs comb earth call these ores fixed alkal solution, br der, which teristic prc

1. $\mathrm{It} \mathrm{is}_{\mathrm{r}}$ is taken, a
2. Fix which ma
3. The colour, by specific g
4. It m impart to
5. The glutinate tore of a oxide.
"It is stated on good authority that the parsonage at Center Croton was the scene of one of the most remarkable sermons of of this great preacher. The upper windows of the house were removed and a platform raised in front, facing a large yard full of trees. When Whitfield passed through the window to the stand, he cast his eye over the multitude and saw a number of young men who, imitating Zaccheus in the sycamore tree, had clime ted these trees and were perched on the limbs. The kindly orator asked them to come down, saying: 'Sometimes the power of God falls on these occasions and takes away the might of strong men. I wish to benefit your souls and not have your bodies fall out these trees.' He expected to see them come down to the ground as birds that were shot, and choosing the valor of discretion, they came down only to be prostrated under the sermon. Great nombert went home to lead new lives, and it is said that more than one of those young men be came preachers of the new faith."

As greatly as Mr. Stearns was favored of God in the conversion of his new neighbors and compatriots, he was still subjected to much difficulty and embarrassment. In the work of setting up new churches and in ordamning new ministers of the gospel, he was powerless to form a presbytery for the want of some other ordained preacher. Mr. Marshall was only a licentiate and so was Josept Breed. All other Baptist preachers in reach were members of the Regular branch of the denomination, and in their disfavor toward the New Light doctrines, refused to bear any pact in the ceremony. But it so happened that the Rev. Henry Ledbetter, who was also a brother-in-law of Mr. Stearns, fortunately about that time came South, and by joining him in the work relieved him of all the trouble occasioned by the want of help from others.
Thus like another apostle of the true faith came Shubal Stearns to seek and to saves quantity, that which was lost amid the forests of North Carolina. Far from home and kindread, he had come to impart to others the acquire any same great blessings that God in his good-of air. Its ness had provided for his faithful servant. Amid the Baptist churches, planted under his own ministry, he spent the short rem- ut does not ant of his days on earth. In the closing scenes of his long pilgrimage, he was saddened in the stress of war and calamity. Gov. Tron and his evil subordinates were making life bitter to thousands who found it impossible to sustain their families and comply with the enormous exaction of the extortionate sheriffs and other civil authorities.
> neral be- ied to be alternate mineral and the diction of dement. operties, s insolemes both lis: and an oliveand by-
int Swednd Yttrone it oc. with the From h caustic alkaline hate powe charac. keberg : e mineral.acquire any
\qquad

Its and aginning facpto a white

Thous with that duced, f solves in commun ide of tita tinging b Consid whether tantalium tablished procured tantalium of oxide from a sp The el bium, cl white oxi possible i: solutely is whicheve priate sol from carl precipita acid. T when fre Infusior ash, occa of these added to throws dd colour. doubt of ; covery of berg, it M this pecu
I. Cer Hisenger

These agents of the Devil were not content with impoverishing the poor people by exacting unlawful fees and assessments, for in the fullness of their malicious wrong doing, the wives and daughters of the people were too of ten subjected to insult and humiliation at their hands. The gentle spirit of good Shubal Stearns, almost Yeady to take its flight for another and better woild, was grieved and depressed by these wrongs on his people that he was powerless to redress. But brare men in Nörth Carolina have never been found submitting to such treatment without a proper show of their disapprobation and resentment. It was thus that Mr. Stearns' brethren and neighbors were found the first of all the Province to meet in solemn conslave, and, after mature deliberation, declare to the world their resolutions in view of such oppression. This cccurred on March 27th, 1767, full three years before the last tragic scene in the dreadful drama of blood and confusion which was witnessed in the battle of Alamance. These were really the first guns fired in that great American uprising for fretdom and national independence.
The soul of the venerable father in Israel had its compeusttions for all such troubles as were boin of this War of the Regulation. He saw the fatth he had first inculcated in North Catolina wideniug and deep ning aruand him with thelap:e of each revolving year. Then, too, that famous Baptist preacher of New York, the Rev. John Gano. came down South and for a season also m de his home in North Carolina. The old man eloquent heard this wondrous young preacher as he rose to still sublimer heights than it had been permitted Shubal Stearns to reach. That magic eloqu-nce, which was in after years to so often charm Gen. Washington and his armies, was then cheering him and the Sandy Creek people. The genius and faith of the younger man was a rare blessing to the tender and faltering spirit of the spent veteran, who in the chill and weakners of old age was at times subject to spells of mental and spiritual depression. Because of his enfeebled body, the sensitive spirit of Mr. Stearns was troubled that he no longer felt all the thrill and rapture of former years. He had never a doubt of the goodness and favor of tod, bit at times grew depressed at a sense of his own unworthiuess. But this was onle a temporary trial of his faith. As the nught of death drew righ, all the older fesidert and confidence were his again; and thus, when the 20th of November, 1771, was come, Shubal Stearns

AP. XVIIR.

ly soluble

 easily reagsten disacids, andThe oxids, and in m.

1 chemists, bium and fiently esHaving rom which with those A obtained
ds columso, yield a s nearly as gh not abs , is (from Its approlutely free ed, may be excess of g soluble, ids.
ret of potof either d has been galls only an orange room to as the dist of Eketo express
zelius and 1 Sweden,
sect. X
had passed beyond the reach of all trials anu temptations of this life, and was with the gracious Master he had sollong served.
which ha ery has 4 Vauque! curs in
From th been ca Cerite.
II. Th ed in nit
"runcan is in his grave
After life's fitful fever he sleeps well. After life's fitful fever he sleeps well. Treason has done his worst; nor steel, nor poison Malice domest c, foreign levy, nothing,
Can touch him further" Can touch him further."
He had done a great work in his stay with our people, and in a comparatively brief interval had wrought such blessings for those among whom he cist his lot, that his is now "one of the fer immonial names that were not born to die."

> his discov- stimony of neral, conwn metal. iod, it has t is termed
is dissolvpulverized.
 precipitated by tartrite of potash. This precipitate, well washed, and afterwards calcined, is the uxide of cerium.
III. Cerium appears to be susceptible of two stages of oxidizement ; the first oxide being white, and the second of a fallow red. The white oxide, by calcination, becomes red.
IV. Sulphuric acid, diluted with four times its weight of water, dissolves the red oxide. The solution, on being evaporated, yields crystals, some of which are orange, and others have a lemon-yellow colour. The sulphate is soluble only by an excess of acid. Its taste is saccharine mixed with acid.
V. Sulphuric acid readily unites with the white oxide; the solution is nearly colourless, but has a slight rosy tinge. It has a saccharine taste, unmixed with acidity, and yields white crystals.
VI. Nitric acid unites most easily with the white oxide. The solution is very sweet, and is not crystallizable. When decomposed by heat, it leaves a brick-coloured oxide.
VII. Muriatic acid dissolves the red oxide ; and the solution crystallizes confusedly. The salt is deliquescent; soluble in an equal weight of water; and in three or four parts of alcohol. When this solution is concentrated, it burns with a yellow sparkling flame.

An infusion of galls produces, in muriate of cerium, a yellowish precipitate not very abundant. A few drops of ammonia throw down a very voluminous one of a brown colour, which becomes black and brilliant, by desiccation. By the action of heat, it assumes a brick-red colour.
VIII. Oxide of cerium unites readily with carbonic acid. This union is best effected, by precipitating a solution of the oxide with carbonate of potash. An effervescence ensues; and a white and light precipitate is formed, which assumes, on drying, a silvery appearance.
IX. Sulphuretted hydrogen docs not unite with cerium.

Sketches of Pioneer Baptist Preachers in North Oarolina.
X. produc head. but it v solution dent m: potash: Peraps no people have yet lived in this ule, als in its fr:
an equal share of honor and trust has been exteuded, whenever such a man was worthy and fit for such marks of distinction. So far from our people manifesting anything of a spirit of jealousy toward our citizens of alien birth, it has really seemed that such an accident of nativity has worked in their favor, and in a thousand instances has given them the preference in popular favor over those who were so unfortunate as to be to "the manor born." Whatever may be said
VEG! from eac stances c and carb prortion o proportic the great ctable ki heat alon proceed f ination of that we sl perations. ciple is cc and differi affinity.

The pre tory, may of vcgetab exist in th chemical I to the ultio compound which rest
by John w. MOore, state historian.

> Memoir IV-Kev. Daniel Marshall of the wisdom and propriety of such a trait, it at least proves the large hearted and unselfish disposition of our people. With such a spirit and characteristic as a civilized com munity, it would be unpardonable if the life and labors of the Rev. Daniel Marshall were omitted from a catalogue of our pioneer Baptist preachers.
Like Shubal Stearns, Daniel Marshall was born in the year of our Lord 1706. This event occurred in the town of Windsor of the then Province of Connecticut. He was reared by a Presbyterian father and mother, and upon reaching jears of maturity was admitted to all the rights and privileges of the church to which his parents belonged. This was a matter of course in Presbyterian practice, and was only remitted in such cases where the young men and women who had been christened in unzonscious infancy destroyed all hope and imputation of virtue therein by outbreaking and abandoned courses of life. As this young Daniel Marshall not only conformed to the usual standard of morality, but was also a believer in the articles of faith set forth in the Westminister Confession, he was not only made a member in full standing, but also in due season was appointed a deacon of his church. He had also married a wife in the meanwhile, and saw children blooming like flowers in the household blessed by his thrifty and prosperous oversight.
chaf. xix.

le of cerium

 than a pin's simple acids; acid. The lso gave evih tartrite of etallic globd more scalyunless it is re ascertain.
istinguished ral circum, hydrogen, ertain proons in the , constitute of the vegposition by kingdom, actual fore indeed, a these opcting prinperior to, chemical
mical hisprinciples , that they ler which proceed lve obtain lure, and pmposing

To the sam y sis and histo following is a

Oxalate ed by dihedra Fahrenheit, it There is, also a considerabl the name of s alate of P acid, which it pose 100 par vert it into os late.

Quadrox. digesting the li is divided acid; and th acid. Hence exists in the oxalate ; or

Oxalate

resembling powder, and is said to for

Oxalate
It crystalliz nated by di At the temp grains of the it precipitat ers it even y important in

- Oxalate formed, eith mingling the soluble oxal yoL. Ir. hallowed channels of commercial traftic had ch the minat- emptiness of Jewish hopes, sols that had been so long reposing on beds of mere formality. The necessity of the new birth, its mysteri-- ous dependence on the workings of the Holy
- Spirit, and the soul's sense of acceptance through the merits of our Lord's atonement,
thus reacted so disastrously on the general spiritual life in New England, there were many noble exceptions to this general rule. There were still men and women left there who had never bowed the knee to Baal. The race of men who had made that stern and inhospitable clime not oniy to blossom as a rose, but it was also become largely the paladium and shrine for the largest and best hopes of the human race. Amid their frozen hills and storm-smitten coasts, wen were nurturing a spirit of liberty and good will, which was in later years to prove a blessing to their descendants and mankind at large. Whatever their theological errors, they were yet true to the best interests of our race in their temporal concenns. Neither the might of bandeu kings, nor the fury of their Indian allies, could palsy that high New England spirit which sent so many of her sons to battle for the defence of free America.
Mr. Daniel Marshall wasliving, as he supposed, in the paace of God and in the enjoyment of the favor and confidence of such a people, when, in his thirty-ninth year, there came a moral earthquake and consequent upheaval of the spiritual dry bones. That mighty and glorious servant of the Most High, Rev. George Whitfield, like another Jonah amid the Ninevites, had come to show the careless New England multitudes how far they had come short in their duty to God. It was all in vain that the church authorities opposed and denounced this terrible exposer of their weakness and decay. Though they shut their church doors upon him, yet the broad fair fields and forests could still be used as standing ground for the vast multitudes that flocked to hear this watchless christian orator tell of what they had forgotten aud overlooked in their careless reading of the New Testament. The burden of his discourse was ever the necessity of faith, repentance and a changed heart in those who would flee the wrath of God. Like John the Baptist, exposing the emptiness of Jewish hopes, so did Whitfield were almost like the preaching of a new gos-- pel to the callous formalists. It was hateful and terrifying to their souls, just as the gracious discourses of the Redeemer had been to their ancient prototypes. As the Pharisees had resented the offiers of our Sa-

CHAP. XIX.
3 composition ;

1 lumps, which oluble in nitric te of ammonia tralize any ex-
white tasteless s are said, with
bearing a conteless; and not monia is mix-
acid saturate
shown by the
1sist of
$\overbrace{\text { Base }}$ 25.55
26.32
36.37
37.50
55.13
60.23
58.84
to the salts in indeed of oxis of opinion

SECT. V .
that, when slow so small, that it

Native veg in plants or thei ple processes, f pal ones hithert
1.
2.
3.
4.

$$
5
$$

$$
5
$$

Citric acid ex

 along with a q ! process, for obt ity of Scheele. vessel of earthe powdered carbo ture well after e as long as this a be required. T account of the from six to eigh gallon of lime-j the liquor has lc cant the liquid, side ; the liquol operations repe The insoluble p add to it a quani about three fou ployed, and pre phuric acid ma pended by stirri acid and precipiviour's terms, and refused him the privi-
leges of 'their sanctuaries, so did they of
New England shut up their hearts and er is church doors against this new apostle of righteousness.
Daniel Marshall had been in all the years of his professed christian life no better or worse than the multitude of his professing brethren. Like them he bad been baptized in unconscious infancy, and as a matter of course, upon arriving at the years of discretion, he had been inducted into full fellowship in the church ophis family and friends. Not ouly this, he had been so orderly in his walk and active in his church duties, he was made a deacon of the congregation. With all these testimonials from his friends and brethren touching his walk as a cbristian, he was yet made conscious of his exceeding needs when the true significance of our Lord's words to Nicodemus were at last impressed upon his soul. In an agony of grief and repentance over his blindness and disregard of the Master's teaching, he cast all his old professions behind him as so many filthy rags, and, through a new-found faith, reached "the peace of God which passeth all buman understanding."
In the tremendous upheaval and renewal of christian life thus brought about under the evangel of Mr. Whitfield, Mr. Marshall, like a great host of other men, turned from all secular occupations, and began that life of devotion to the Master which was to embrace the whole remnant of his stay in this world. In his new-born zeal he at once began the preaching of that gospel which had been so long in reaching and filling his own soul. Nor was he content to thus discharge a sense of duty in proclaiming Christ to his civilized countrymen. In his burning zeal, the souls of the perishing heathen lay heavy upon his heart, and we find him proceeding to the headwaters of Susquehannah river as a missionary to the Indians. The war between the tribes and white people arrested him in these labors, and he went South to continue the work thus made impossible at the North. It was thus the Rev. Shubal Stearns found him in 1753 laboring among the settlers of Northern Virginia, around a place known as Opequon. There were many things in common between the two evangelists to bind them into unusual affection and brotherhood. They were the avaunt couriers of that great New Light Baptist
ned,
sim-
inci-

[^5] supcr-psalate of potash, \&c.

Sketches of Pioneer Baptist Preachers in North Oarolina.
BY JOHN W. MOORE, STATE HISTORIAN.
Memoir IV-Rev. Daniel Marshall.

ert.
ven
tior

CHAPTER TWO.

ries the conclusion that it was his duty to bear eached the little Baptist church in Opequon near Winchester in Virginia. This octhe performance of so momentous a duty. It was so provided that in one of his missions in the Old Dominion, that he was so happy as to include Col. Samuel Harris among the nuaber of his converts. This gentleman by his talents and social eminence had exerted great influence in Virginia, and a mighty stir was made in Episcopal circles by the news of his conversion and joining the Baptist church. Under the Royal Governor he had been appointed coxmander of one of the forts which were kept garrisoned at that day as a defence against the great northwestern tribes of Indians. Col. Harris at once resigned this and all other secular employments, and became a renowned and effective agent in the spread of Baptist principles. Perhaps not even the Rev. John Leland did more to make the

CHAP. XIZ.

lime, and preloyed for satura:h constitutes the carried still far. cid.
rape of which vaof their preparaf suiphuric acid, ution five or six more soluble in ther vegetable a.
ith nitric acid, in ut being able to by using a very the tartaric into zer obtained four rumb, also, was the tartaric acid water and alco-
taric acid is decid liquor, which 1 ; and a large he results of its have inferred
d Vauquelin, it species. From odorous : in be, with potash, inguished from from the aceming, with pot--Influenced by submitted the rigid examiy both consist empyreumatic

SECT. XIII.
stance to be di and afterwards ing principle th times considera printing, the ba to the cloth by then dried, and gredient, whicl basis has been a moved by simpl
V. The vari reducible to fou

1. Indigo is
does without t chiefly, of sever: of America and jeing cut a little pith water in lar ${ }^{2}$ ng this process, treen, but beco Pperations, by w stomplicated, an ${ }^{\text {a }}$ ateness. A go i n's Chemical I
1 Indigo has bee om that princip ing boiled on eight of the in touched; and tract, has a red d in inxed and e sulphuric acid irectly, in a dilu - Saxon blue. B yo becomes solub to green. It rec to the air, by agai fected by allowing ble matter ; or by plate of iron. Si gen, are green wh our by expošure

V®L. II.

State so great a center of Baptist influence. Mr. Marshall, with such a coadjutor, became mighty in the pulling down of strongholds. Over all that broad region south of James river, like Paul and Silas, these two evangelists pressed on in their work until scarce a man could be found who had not been warned and invited to accept of the terms of a salvation so sweeping and broadcast in its terms and limits.
It was all in vain that the authorities and adherents of the Established Church in Virginia sought to put a stop to such an evangel by invoking the aid of the legal authorities. They filled the loathsome jails with Baptist preachers on the false pretence that these ministers of peace and righteousness were disturbers of the public peace. Men who were so meek and gentle that they refused to resent the most wanton and inexcusable invasions on their personal rights, were held up to public scorn as malefactors for no other reaso than their efforts to seek and to save perishing souls. It is one of the world's ablest epics to tell of what moral heroism these Baptist evangelists displayed in their battle with the intrenched hosts of the intolerant Churchmen. Even as late as that time, when James Madison had become a leader in public affairs in one of his letters we are told of how five blameless and eloquent men of God lay confined for tedious weeks in his vicinity simply because they had felt it their duty to preach the gospel of Christ as they believed it in their hearts and souls. It was all in vain that the statute of 1st William and Mary had proclaimed toleration to every part of the British Empire. These promoters of both the law and the gospel, on the false plea that the Baptist preachers were disturbers of the public peace, could find magistrates of their own
faith who were wicked enough to thus violate laws both human and divine.
But in these, as in almost all other, instances of such oppression, the blood of the martyrs became the seed of the church. In spite of all the injustice and suffering undergone, the evangelists bore bravely on the Baptist banners until the persecuting Churchmen had but a pitiful remnant of the people left to do their bidding. The work thus bravely executed was also to be further blessed. It not only held the ground thus gained under suffering and tears; the great mind of Thomas Jefferson and that of his compeer Madison were to be not only enlisted for the defence of the Baptist people, but in due season to evolve from a study of their practice and principles the grandest
features of our civil polity as a republic. Most emphatically in this way had the stone which was rejected by the builders, become the head of the corner."

When Mr. Marshall was dained to the full gospel ministry by his brothers-in-law, the Rev. Messrs. Stearns and Ledbetter, he assumed the pastoraten of the church on Abbott's Creek. While thus serving this flock as a special duty, he was also abundant and unceasing in his excursions to distant points to thus bear abroad the glad tiding of peace and love. This work had become as necessaty to his peace of mind as the air he breathed. He could find no peace with the knowledge that men and women within reach were yet unblest with the knowledge of the Lord. He met no such stern antagonisms in North Carolina as were vouchsafed in Virginia and were to be encountered still later in his life in Georgia. Gov. Tryon and his subordinates in the Provincial Government were very harsh and unfeeling too often in their treatment of our people, but in religious matters he concerned himself no further than to do all he could towerd saddling Episcopal rectors on communities that rarely wished for such gifts. In some of his letters he expressed great scorn for all people who were so besotted as to hold Baptist sentiments, but he had seen too mach of the danger of his interfering with popular liberty in the stamp act trouble to venture on anything like religious persecution. It may be that the imprisonment of the Newbern Baptists had the officious countenance of the Governor, but if so, we now lack evidence of the fact. As a rule, religious liberty was ever the undisputed right of all North Carolina people without any regard to the nature of their creeds.
Thus abundant in labors and highly blessed in all that he undertook in the Lord's service, Mr. Marshall spent the term of his residence in the Old North State. He saw the feeble beginnings of his and Mr. Stearns' libors expand into the great historic body known as the Sandy Creek Baptist Ass cia tion, and he heard many moving accounts of how under Burkitt and the New Light doctrines were prospering in the Albemarle jec region.

Mr. Marshail had but one son by his inrst wife, but being so unfortunate as to lose ber, he married again in 1748 Miss Martha, a sis ter of the Rev. Shubal Stearns. This remarkable woman proved a rare blessing to her husband and all others who came within the magic spell of her personal influense.

CHAP. XI工
fording a perlof oxigenizef its biue colalling short of ted nitric acid indigo is ders, floating in after evaporahot water, filrystals appear, ptash. These hammer, detwo of finely fing nitrous aas is evolved, a zole bursts into
uiliatic acid desulphuric acid of watery soulate their ap-
sly reduced to feen colour regen be absorb-
affords but litts, usually obng with a por-
g red colours, o derive colour archil, madder, uble in water ; They are all naturally crimarlet hue, it is The basis, by his may be exwill leave only ecoction, some muriate of scarlet colo
3. The y meric, fusti accordingly tion of alum minous base ide of tin, al and with oxi it gives a gl^{1}
4. A com is the princi as common ures, on a bl the cloth a flour. The black die, b
VI. The of fixation 0 with a base in water, a s matter is p what is term is given by madder into that quantity in a mortar, The water and muddy. more coloun fifth or sixtl then or wel boils.-Let i um, dissolve Acld an ounc potash; a vi ter will be p peatedly wit. obtained, con

Other lake stitution of di

She was as famous as her husband for her zeal and derotion. With no disposition to usurp the religious functions peculiar to male members oforthodox christian churches, she could still on proper occasion melt the hearts of all who heard her in prayer and exhortation. Her oldest son, the Rev. Abrabam Marshall, won a great pl tce in the love and admiration of his countrymen for his piety and eloquence. With him and numerous other descendents around her, Mrs. Marshall survived to extreme old age.

In those pre-revolutionary days in our history as a people, there was no little talk and belief in the near approach of the millenium. At one period of his life Mr. Marshall was a firm adherent of this persuasion, which had onsinated in America just previous to the advent of John Wesley and George Whitfield. Multitudes were in daily expectation of the second coming of our Lord, and they"produced a great awakening in the hearts of the people. The most careless and unbelieving, seeing such men as Daniel Marshall abandoning their çomfortable homes and forsaking everything in the shape of property in their zeal for the cause, profoundly dreaded the possibility of such an event as that which was so confidently predicted. With the popular mind thus possessed with the possibility of such an event as the second coming of our Lord, it is not wonderful that multitudes to so impressed should have sought safety, both for soul and body, by making a full surrender of all their rebellious and sceptical promptings, and in seeking a part in the great atonement accomplished for all true believers on Calvary. When the times of such religious excitement over the expected coming of our Lord have passed by with nothing to justify such an expectation, it is too common for worldly people and too many professed christians to sneer at the credulity of such dupes, as they are called; but let all such remember that the Master himself declared that this momentous incident of the coming ages was to be as a thief in the night in the matter of its approach. Then let no man sneer at his brother for a mistake concerning this tremendous and uncertain event which so surely ayaits its fulfilment somewhere in the coming years. If not even the angels can foretell that day and hour, it may be well pardoned in any human intelligence that it should be mis taken in surmises on this subject.

Mr. Daniel Marshall was not a Baptist when he indulged in his anticipations of our Lord's speedy coming again on earth. Laborious and useful years of service, both among his own countrymen and the heathen
capable bination madder olouring forming process h cropir times iturate, he bag: opake a till no fier the an ear= liquor e of altirring. pnate of ng matrash relwill be e sub-coch:-

Mohawks, intervened between such an ex pectation and his acceptance of the truth as

CHAP. XIX. Baptists hold it. If he ever was vain and
ineal, means

Tan and in t the larg and in affords
I. 1 accordi fect put

1. In till the : ceases t distilled water ft cipitate nin, whi There that, by titled t though rations.
2. In of carbo ing was thus pre but cont
3. Int precipit: the exct When a and mus
It has catechu gists' sh being a substand tract of
purer lo fantastic in this respect, it was before he became a member of the Yirginia Baptist church. Let us remeniber, too, that if our Saviour had thus failed to retlize the anticipations of his faithful servant, this disap pointment worked no abatement in his zeal and devotion to the great. Work of deliverance from \sin and of fealty t t) the Prince of Peace. Like a tireless and valiant soldier of the Cross, the Rev. Daniel Marshall be came, if anything, more eager than ever to spend and be spent in the sacred work of human salvation.

It was thus that ere long Daniel Marshail was again found turning away from home and all its' creature comfor ts 'to undergo har dships and sufferings in arother missionary journey, and settlement in the Province of Georgia. There selecting a home near what is now the city of Augusta, he resumed the work he had so successfully prosecuted in so many previous fields of labor. The same fervor of soul and pathetic eloquence were his as he implored his'new neighbors to seek the salvation which was so free to all who will only open their sinful hearts for its entrance. The old man more eloquent and dauntless than ever paused never a moment in his work by reason of human obstacles. It was in vain that the civil and religious authorities of St. Paul's Parish procured his arrest and temporary imprison ment. Repeiting Peter and John's reply to the Sanhedrim's command and enjoining their cessation of proclaimin: the resurrec tion and ascension of our Loid, he to'd his tormentors that their orders for his silence in their bailiwick were impossible of being complied n th on his part. That as the herald of our Lord's coming kingdom in their midะt, his duties were of such a nature as to transcend and overshadow in importance all the laws and injunctions framed by hu man anthorities. Not even when in the midst of the Revolution he fell captive to his British enemies, did his fortitude for sake him. Having asked and obtained permission of the officer in charge to speak and pray for these enemies of himself and his cherisbed American cause, he impresseta them that they at onco gave atainumity Thus in faithitul service to God and his fel lowmen the cood old man labored on in his mission until ou the 2ud day of November, 1784, he rested from his long and useful ca reer among men and went to receive the re ward awaiting the redeemed.
cipitated by
willow, \&c. jod, contains t, the next ; e epidermis
ocesses; but, state of per-
ariate of tin_{8} abundantly, quantity of ity of warm of t in is preand the tanevaporation. , to believe scarcely enar'k applies, lowing ope-
ted solution ate, after betan. When rfectiy pure, kali.
tic acid. A water, and of potash. falls down, of water. japonica, or in the druga remainder buritics. A ame of Exof \tan in a

SECT. XVIIX.

Sketches of Pioneer Baptist Preacbers in North Carolina.

ours.

3. It is solubl alcohol. Wate
4. Hot ether ed in a spoon, it
5. It is soluk tric acid it diss formed, a bitte
6. It may b tion of resin ar to render it sol

This nam pears to be P tion to nitric
I. To a qu a tubulated 1 specific grav as.long as an a yellow mat While the c ed into a gla with a glass thick. As : moved from orange-colo ey, having : matic smel] water; app uor, as it c ered with tration; ar This mass urating it with charc
II. Sub

1. It is
2. It he in boiling
by John w. moore, state historian. zold Memorr V-Rev. Lemuel Burhitt. chapter one.
The greatest of all the poets has declared that "there is a tide in the affairs of men which, taken at its flood, leads on to fortune." Doubtless time and opportunity have greatly controlled the changing aspects of individual and national advancement; but on the other hand, there have been men whom it would be difficult to associate in our reflections with any possibility of mediocrity in their relations to their several environments. Where could an A lexander, a Cæsar, or a Napoleon, hive been placed, or, under what circumstances existing, which in apmute, inglorious Miltons or village Hampdens? Such a suggestion will be at once set down by well informed people as something impossible and beyond all range of moral sequence. The dauntless hearts and imperious minds of these mighty kings of men were as much beyond the control of law, precedeni and human conrentionality, as their fame exceeds the usual ratio allotted to successful adventurers. They were like the stars and dwelt apart in the solitude of their native greatness and originality. Had there been no possibility of Gallic or civil wars, Cesar would have yet been immortal as the rival, if not the superior, of Cicero as an orator, and of Tacitus and Livy as a historian. So, too, the Code Napoleon is of itself enough to demonstrate how the migh. tiest of modern soldiers would have shone in the civil development of his beloved France. With all these things being admitted, there jet remains no doubt that in even their cases the man and times had met. Golden opportunity flung wide open the glowing portals each was so eager to enter; and thus in happy coincidence each made the most of what his own genius and fortune had made possible.
While it may seem a little like the logicians' reductio ad absurdum, to preface the memoir of an humble Baptist preacher with analogy between himself and such grand historic figures as have been referred to, yet to borrow an idea again from the mighty whole world akin," These conquerors and
pour ecomes
\square

The
scourges of the human race were far inferior as to any good they accomplished to many a man who asked for no higher honors than those won in proclaiming a crucified Saviour. History holds record of no more glorious and picturesque figure than that of him . Who, arising from his blindness and pharisaical enmity, went forth to lift up and
instruct the people of so many different nationalities. While subsequent records contain no such an evangelist as Saul of Tarsus became, though in his genius, culture, fearlessness and derotion, he will be ever unapproachable, yet it has pleased God to raise up other men of largely similar aspects, To the life and services of such a preacher of righteousness, this memoir, with all due candor, invites the kindly attention of the rader.

In all the long catalogue of Baptist preachers who, in the last two centuries, have lived and labored for the Lord in North Carolina, no greater name appears than that of Lemuel Burkitt. He is yet indeed, in largeness and variety of his gifts, in the abundance and beneficence of his works, and the power of his influence, unequaled in all our history as a civilized people. Though born amid all the comparative poverty and disadvantages marking the condition of the great body of our people in that period, he rose superior to the tramels of birth and place, and made himself as great in knowledge as he was in true godliness. That a man-child so ushered into the world, amid humble and unlettered associates, should, by his almost unaided efforts, so overcome every obstacle to education and consideration among his countrymen, goes far toward vindicating the opening generalization of this memoir. Lemuel Burkitt neither waited for time or tide in human affairs to lead him on in that grand pathway of consecration in the service of God and his fellowmen, which, in due season, won him such glorious guerdons. Like the great Duke of Wellington, "The pathway of duty was his road to glory." He shed no human gore even in the rightful defence of his native land. He followed no glittering baubles of pride and ambition. His mankood was spent first in laborious self-preparation, and then in the most ardent and ceaseless labors for the lifting up of the minds and spirits of his people.
With so noble an ideal ever leading him on, Lemuel Burkitt became in due season to the Baptist churches in eastern Virginia and North Carolina almost as potent a guide as was Martin Luther amid the Germans of

SECT. XIX.
Italy, and on but not disa: according to Naphtha smell and m By long ex passes to th ric or nitric not miscibl
Naphtha
in which ox. circumstand discovered action on it metals soon naphtha int

Petrole greasy feel redish brow

When dis tained; the oil ; and a

Petroleu convert it i the same with fat an and, when

Minera of a redish resembles 1

The solic men or Mir and Peat.

Maltha little or no but does n. 2.06. It i: leaving or

Asphal
and does
1.07 to 1.61
his time. Not only revered as the foremost preacher amid his clerical peers, he was also a reformer to chasten and elevate both creed and practice in the churches, he found s) disorganized and purposeless. He it was, above all others, that induced these congregations to give over their jealousies and fears in the preparation for a closer union in the Lord by means of a reformation of the churches. To his vast and tireless exertions as missionary in distant regions, he added another grace in his written records of his times as to their religious aspects. Thus be became thr'ce over entitled to undying recollection and praise.
Mr. Burkitt was born in Chowan county in the year of our Lord 1750. His parents were not blessed with wealth or much knowledge of books. They were like the great body of their countrymen, plain, hard-working people, who, in the utter want of public schools, were thus unable to afford any large advantages to their eager and intelligent boy. It is true, that the towns of Edenton, Newbern and-Wilmington in the east, and the Transylvania academies of the western settlements, were in existence, but to the poverty of the Burkitt family they were as inaccessible as were Oxford and Cambridge Universities in England. No doubt, at rare intervals, little Lemuel Burkitt went along with his parents and saw in Edenton the pomp of the Colonial courts, as, amid an army of sheriffs-with drawn swords, the judges, in their bag wigs and gowns, opened in the King's name their solemn proceedings. He saw a still more imposing pageant each winter, if in Edenton when the General Assembly met. The wharves, too, of that ancient capital were thronged at that day with vessels from beyond the seas and those engaged in the New England and West India trade. Edenton was the foremost port of entry and thus held a paramount importance among the sister towns of the Province.
To a boy of Lemuel Burkitt's natural acuteness such opportunities of seeing the higher aspects of human life were by no zieans lost. No doubt St. Paul's Episcopal church, with surpliced rector and its organ and choir, came in also for its due portion of impressions on the sensitive and imaginative soul of the lad. The grand harmonies of the chants, the pomp and beauty of the liturgy, were alike a revelation and inspiration to bim, as thay have been to countless others, who have listened spell bound to
flame. By distillation fer se, it yields a light brown oil resem-
bling n
a quam
Klapro
of his
The
require
colour,
Elas duction It is it heat it f tum.

Ret
It has ture.
It melt
It is p hunelre

Pit-
of mint urown

Broz tinctly, origina nearly and wit mode o bears : charre

Blac
purpos which
men an
ingredi melt on tirely a a quant in solut oration produc may be
tort, a
these noble prayers and confessions of the soul uttered by the great prelates of the past.

But with all these impressive accessories to her system of worship, tne English church failed to satisfy the longings of Lemuel Burkitt's soul. He had made himself scholar enough to read King James' English version of the Holy Scriptures, and he had heard more than one Baptist evangèlist giving his gloss as to the disputed points in the New Testament. The great problems which are ever suggesting themselves to the heart of man were not wanting in the early experience of this acute and profound human intelligence. He could understand how the wisest of men had come to the deep questiou of "wherein shall a young man cleanse his way?" In the mystery and suggestions of -the-right reason, these fearful self-questionings could not be evaded, however succesfful he might be in the companionship and pangs of the day's duties. "What shall it profit a man to gain the whole world and lose his own soul?" cried the Son of God, and the words came to Lemuel Burkitt with all the sanctions they had known with the multitudes on the plains of Galilee. In such communion with his own" spirit, Lemuel Burkitt fled for refuge to that divine love and compassion, in whose unfailing help so many myriads of other agonized souls have found peace and rest. In his nineteenth year he thus made an open profession of religion and became a member of the Baptist church, then known as Camden, but was really the old mother-stock, Shiloh. He was baptized by Rev. Henry Abbott. There is now no account of any other Baptist church in all the region of old Albemarle east of Chowan river and north of the sourd. There wãs Meherrin in Hertford, Sandy Run in Bertie, and Kehukee in Halifas. It was thus only by some considerable travel that Mr. Burkitt could reach any congregation of his own faith and order.
He was not alone in his glory as a leader of men in the ancient bailiwick of Chowan. There were a score or more of gentlemen known and honored all over the Province who then had their residence in its limits. That learned jurist, Mr. Barker, who was the law tutor of Gov. Samuel Johnston, was yet the greatest name in the courts. Mr. Samuel Johnston and Mr. James Iredell, his brother-in-law, were to reach even higher honors and renown that was ever the fortune of their instructor. Besides these legal and civil luminaries Edenton numbered in

CHAP. XIX.
mmonia, and 2 analyzed by cond volume

a, of which it

 2 deep blacka rare pro; Derbyshire. By a gentle a, or asphal-
same county. glassy fracrravity 1.135 bright flame. = acid. One arthy matter. tinct varieties families of carbon.
exlibits, disdecay it has dèlastic, and clear flame, ur. In the pearance, it is been half
pplied to the etables from pund of bituof these two best kinds almost enh, they yield of ammonia ich, by evapan immense gas, which In the repotains gen-

Its inhabitants. the Pollocks, Benburys, Swains, Brownriggs, Johnsons, Creecys, Jones's, and other families noted for wealth and culture. Reared in such a community, it was no wonder that Mr. Burkitt shotild have been incited to early and strebuous efforts at self-improvement in mind as well as the more solemn and important matter of escape from wrath to come in the next world. Like many more of his North Carolina compeers, this work of education and mental discipline was to .be almost wholly dependeut upon his,own unaided exertions. Reference has alrearly been made to the great dearth of schools in the-Province. There was a parallel want of books also. Indeed the lists of the literary treasures included in the libraries of the richest and most intell gent men of that day seems pitidble to the minds of men who, in this generation, rejoice in su :h overflowing abundance. A few great men might add Shake speare's and Addison's works to their Eng. lish Bible, but all other British and French classics were conspicuous' by their abserce. It is probable that Elder Burkitt's whole literary repertory was included in the Bible, Pilgrim's Progress, Watts' Hymns and Gill's Theology. Not even the wisdom of Dr. Johnson or the wit of Pryor and Steele had as yet triumphed over the double obstacles of an intervening ocean and the stolid ignorance of the people. The sole reliance of the great mass of the North Carolinians of that day, in the matter of educating their children in the first rudiments of literary culture, was in the homeless wanderers, who passed from settlement to settlement and for brief seasons would halt long enough to teach for brivef season the children of their temporary vicinage. They thus got food and lodging by quartering on first one family and then another, and in addition won a stipend, meagre at best for his labors in the \log school house. These restless peripatetics were thus too general in their favors to work much benefit at any single scene in their careers. Tö such instructors the great preacher of the future was indebted for all the small aid he received in fitting himself for the future that as yet seemed so hopeless to his most ardent imaginings.

We may imagine, but would be utterly unable to describe, the added anguish of soul that came to young Lemuel Burkitt when, in God's providence, he had become
.he end ;getable benzoic 3s, also, ith their 4 metalrly, and are takrincipal he alco-
convinced of his duty to devote his life to a proclamation of the gospel. With all his peerless native endowroents both as to mind and energy of purpose, he found at every step of his study, not only of Gill's Theology but in the sacred text itself, a thousand things that vere all ridnt and darkness.

Sulphat His ignorance of the orientalisms and figures

Nitrate

 of Hebrew speech, the confusing historical and geographical allusions, and the thousand
Muriat

-

 every scholar unfitted by warten and dismay every scholar unfitted by want of previous preparation to comprehend the task before him. But the race is not always to the swift. Determination, love and prayer bave unlocked all that is needed to be known in God's word to countless others far less com
Acetal

CRAP. XX. hol at

.834	.817
0	0
0	0
0	0
0.38	0
0.38	0
0.5	
1.5	
36.25	50
0.18	0.69
0.32	0.06
4.75	4.88

8. Alcohol, when transmitted througn a reunlo copper tube is decomposed. The tube is found lined with a very fine light soot resembling lamp.black, and an enormous quantity of carburetted hydrogen gas is evolved, not less, as appears from an experiment of Van Marum, than ten cubic feet by the decomposition of three ounces of alcohol. From the analysis of this gas, Mr. Cruickshank has inferred that in alcohol the carbon is to the hydrogen in the proportion of 4 to 1 .*
9. In order to determine accurately the composition of alcohol, Lavoisier burned a quantity with very minute attention to the products. The weight of alcohol consumed amounted to 93.5 grains, and 110.32 grains of oxygen were expended in the combustion. The water produced amounted to 106.2 grains, and the carbonic acid to 95.8 . From the known quantity of carbon in carbonic acid, and of hydrogen in water, Lavoisier inferred that the alcohol, on which he operated, consisted of

Carbon -	-	-	-	28.53
Hydrogen -	-	-	7.87	
Water (existing in the alcohol)	-	63.6		

100
Comparing, then, the composition of alcohol with that of sugar (a compound, as has already been stated, of 8 parts hydrogen, 68

[^6]
Sketches of Pioneer Baptist Preachers in North Oarolina.

oxygen, and :
led to the cor the carbon, b bonic acid, a the sugar, c combine carl rated.

An analysi ble skill by S ed in his exp pour of alcol by weight of

In the sed transmitting analyzed th discovered ; escaped de tions of alc:

These true elem particular cent. of w the oxyge in the sta and nitro:
By dist an impor lighter th miscible
dy juhn w. moore, state historlan.
Memoir V-hev. Lemuel, Buritit.
chapter two.
ur last chapter left the subject of this Our last chapter left the subject of this
emoir in the midst of his first trials and difficulties encountered in his work of fitting himself for the gospel ministry. He was neither so ignorant as to be blind to his many needs, nor yet so conceited as to dream that any farility of speech and elocation would atone for his want of knowledge. Unlettered as he was, his natural acuteness and logical turn of mind enabled him to see how utterly some of the good old preachers of that day failed in their efforts at expounding things beyond thef apprehension. He saw that in most of them that beyoud their rhapsodies over the love and grace of God and the final perseverance of the saints, there was little left as topics of discourse. Of coutse, they never forgotor malea to remind their hearers of the paramount doctrine touching immersion, but this could be only done in a very brief and perfunctory manner. Few of them knew anything of the matter beyond the statements of the New Testament evangelists. The irrefutable and fixed truth of bistory, showing how the Romish popes and councils had changed and perverted the ordinance was beyond their studies on the subject. While it was very true that the Bible statements were of themselves enough to settle the matter for all reasonable minds, there were still many men and women who were staggered by the questions of Rev. Mr. Charles Earle, when he asked his Baptist neighbors how it could be that so many millions of other christians had for centuries been sprinkling their babies instead of immersing their adult converts to a new style of life. The whole mystery of the Romish iniquity, in its high-handed perversions of the early christian ordinances, were so little known that the Episcopal clergyman could thus darken counsel and distress his unlettered competitors ; but at best how could so able and just a man think that such fencing with the truth was a part of his great duty in "justifying the ways of God with men"? Mr. Earle knew even better than men"?
earer the isier. In in 63 her pose that exist, not h carbon,
sndergoes nsiderably mable, and id has re- and the apostles, yet he accepted as authoritative and rightful a change in Bible practice on no better grounds than the decrees of a sect his church had been for centuries denouncing as the rood of the scarlet woman, and had put to death as traitors and heretics thousands who had dared avow faith in Rome on English soil.
But let us ever be thankful to God that while ber man-leapening is invaluable in its sphere, and always a mighty helper to the man who undertakes to expound the mysteries of godliness, yet at the same time the divine goodness has so ordered that those things really necessary to be understood in the Bible plan of salvation are so plainly set forth that even the wayfaring man may not err therein. Popes, prelates and councils on the one hand, and synods and conferences on the other, may set forth their interpretations of what they hold asstruth, but the ultimate appeal of every true enquirer as to the way which leads to life eternal must ever remain in the imperishable chart God has given us as a lamp for our feet. It was on such safe and traditional courses that young Lemuel Burkitt turned from human glosses and gathered for himself from the fountain head of truth the rules of his own faith and practice. How with such meager aids to higher attainments he managed so soon to shine as a star among his humbler brethren in the Baptist ministry 'was no doubt astounding to himself as it was grateful to the thousands who hung enthralled on his thrilling utterances. Converted in 1769 in his nineteenth year, we find two years later, when Gov. Tryon was ravaging the country of the conquered Regulators, a new preacher appeared down in ancient Albemarle. It in a we was only two years later when he was called bout 1 !
to the pastorate of Bertie or Sandy Run church. This was then the most influential body of Baptists in eastern Carolina, and for so young a man to become their guide in religion was no small tribute to the unusual gifts of the young pastor. But this was only a foretaste of what the power and influence of Mr. Burkitt would soon be.
In order that the average reader may understand Mr. Burkitt's relations to the Baptists of Albemarle in that great era of change and reformation in religious and political affairs, it w 11 be necessary to recur to the coudition of the churches of his faith in the eastern and western settlements. When in

CHAP. XX.
varieties are intervention
any quantity he mixture to ated sulphuing care that 120° Fahrenously heated with a tubua glass tube, erture be imndensible vaduced are alby the applimaterials bethe receiver. ppear in the ad the receivcontains, will ify it, a small and the mixgit occasiondistilled in a be preserved ployed, as a-
er be removpduces abunper, distils oiquid potash o a heat sufe oil of wine
two pints of half a pound rials, by setmixture by a
composed; over ; and, carbonate o When th the vegetal ed with sul ganese, and tained, also, phate of cor The crys which may tillation in a colour, and specific gra be reserved Derosne, * tl specifically ly acid, assu kali which t was found a has even le obtained, in portions of a of potash pr rectified by has a penetr ly with the F is highly in that it is mis ities of ethes nitro-muriat name of hyr fined to the is owing, the changes in th

These obs M. Mollerat. precisely the one containe The first he

1773 Lenuel Burkite decame the pastor of Sandy Run church, there had never been exchanged the slightest token of fraternal recognition between the reformed churches of Sandy Creek Association and their Baptist brethren in the low country. Eight years of marvelous growth and expansion had been vouchsafed of heaven to the little group of the New Lights who formed the first congregation planted in 1755 by Messrs Stearns and Marshall. But a strange and unreasoning jealousy had been manifested by the older Baptist preachers and congregations toward these apostles of a purer faith. The same aversion to all change which is yet so largely characteristic of North Carolinians had condemned unheard every overture from the New Light missionaries. These old Baptists of the remote past were as unreasoning and deaf to the truth as have been the misguided Kehukees of a later period. The truth is, that the people were misguided by weak and uninformed preachers, who had failed to comprehend the logic of the situation and the force of the truth through the fact that they were unprepared to part with their prejudices.

Bishop Burkitt, young as he was, had suffered from no such unchristian disability. He loved the truth wherever he found it, and the truth had made him free. In the might of his victorious zeal and eloquence, he traversed the broad territory then holding the eastern Baptist churches and as one inspired he laid bare all the ruinous inconsistencies of the faith and practice which was keeping his beloved people in error and disunited from their wiser brethren. He told them that Baptists for centuries had warred upon infant baptism because Christ bad required faith and repentance as prerequisites to such an ordinance. Here were Baptist churches not only baptizing men and women into membership, but in more instancos than was at ail creditable, they were ordaining ministers to the work of the full gospel ministry who made no pretence that they had any experience of the new birth in Christ. Was the Saviour’s declarations to Nicodemus to be set down as meaning nothing. or were the Baptists claiming the old papal power of changing the Master's teaching? Was it no longer true that the Bible was the great Baptist iule of faith? Had the churches set up some higher standard of construction as to the plainest teach ings of the Scriptures? The young apostle of the truth, with all his superiority of elo-
s retort, d to disa green on. Its sroducts M. M. though werfuly of alducts, it 1 which may be e latter acetate may be impid; ; rapidd; and cepting requaling the it the is coner, and but to
ones of ich had hat the
1ly 41. ic acie

* Annales di quence and equipment, was also consum-
t Annales de Chimie, lxviii. 88; or Nicholson's Journal axy. 155.
mate in his bearing and treatment of his less gifted brethren. Nothing more clearly demonstrated his greatness of soul than the fact that while thus exposing the ignorance and
mistakes of his clerical peers, he was still enabled to retain their love and admiration
that ca with g acid, h quired added -that t l From nution same Its si
plied a silv tempt into b to be it five only a

Th kalis, rumors of discontent and remonstrance over the course pursued at Sandy Run.

Not only had the visit of the Rev. Messrs. of M_{i} tion, water Falre

Ac crysta the ai Wenz
of so much labor, prayer and tears, they said was now doomed to certain division and
grow mois the air. It not quite t very small that it give coloured by

Acetate rioned aceta for solution.

Acetate ly in the sta cent, and so

Acetate position, fror sulphate of a tance from it however, to mon alum, a with acetous

The meta described in edge of this made by a m ferent metall with bases of siderably tha ly a very sme ing to the pre ed pyro-aceti less dcfinite we obtain a ties.

Of all the r greatest speci kalis. In thi weight of the none of the py The residuum of charcoal. were distilled, and manganes

* Annt moral.wreck. It really seemed that these prophets of evil were right in their horoscope of the future. Tidings from the upper counties were full of the resolutions of divers Baptist churches, who were instructing their delegations to the appruaching session of the Kehukee, Association at the Falls of Tar river, and nearly all of tuese were in the plainest sort of way concemantory of sandy Run's action.

But the patient and trusting soul of Lemuel Burkitt was all unmoved at the prospect of his brethren's inanify. He was at work for God and his people, and no human displeasure could reach or dismay a soul thus doubly armed in the course of duty. As the clerk of this same great B, potis A Asociation, he had won so much love and admiration from all his brethren, it was sad to think that any part of the losing communion of the past should be lost by his effurts for the Lord. His sensitive and petic soul instinctively shrank from everything like feud and bitterness, but he recalled the fact of bow his Lord and Master, witli all his gentleness and beneficence, had yet iound life so little a bed of roses; so let the worst come that was possible to the prommings of prejudice and unreasoning prepossessions, the pathway of his duty was still left as plain and undisturbed as the light of the stars.

On the other hand, there were many things to sustain the young reformer and his faithful Sandy Run congregation in their high and devoted course. Elder John Meglamre, the moderator of the Kehukee Association, was the first to come to his rescue. His Sussex church in Virginia passed resolutions in conference precisely similar to those of the Bertie people. Then came news of similar action of the churches both in Virginia and North Carolina, but the great majority had as yet been averse or silent on the issue. Before the month of October could come and witness the marshalling of the Baptist hosts in the discussion of their differences, the shots had been fired by the British soldiers at Lexington, whose echoes rolled around the world. Loving hearts already sore at the prospect of discord with brethren, saw witi added dismay their native land forced into conflict with their King, who was preparing great fleets' and armies for their subjugation to his wishes. It can, then, be easily imagined how anxious and prayerful the soul of Lemuel Burkitt must VOL. IT.
are grown as discord and danger, both in
osure to old, and only a ix finds ; 0.845, it mend water ed. but on-:liques-

lecom-

 ne and imporpplied, f comlumineIready knowl. y been he dife salts r con$1 g$ on= is ow-termin, the d, till oper-

Jf. the 1 g alequal
ever,
pper.
rtion
lead
zinc

The pyro and patriotic countrymen, he only drew evix descri which at fir and somew but it is n gravity, w combustib
nearer to God as the night of death and uncertainty deepened around him. To follow on in the road of duty and right might hring him sorrow and the loss of ali things worldly, but there yet remained, like hope in Pan- specific dora's box, the consolation and support of his soul at ease with God and himself.

Chens a taste, hes cool tile oils, specific t is very ; point is 138° Fahrenheit. It is miscible in all proportions, with water, with alcohol, and with all the volatile oils, and, at a temperature considerably below its boiling point, with the fixed oils. When heated it dissolves sulphur and wax.

CHAPTER XXI.

ANIMAL. SUBSTANCES.

THE products of vegetable and of animal life, though they agree frequently in external characters, and even in some of their chemical relations, present several circumstances of distinction, which, in general, sufficiently discriminate the two classes. Animal substances are the results of still more delicate processes, and of a more refined organization; and the balance of affinities, by which they exist, is disturbed by still slighter causes. To the theee great components of vegetable matter (oxygen, hydrogen, and carbon) a fourth is, in animal substances, added, and constitutes a large proportion of their structure. To the nitrogen, which they contain, are owing some of the most important qualities, that distinguish this class of compounds. Hence it is, that instead of passing through the vinous or acetous fermentations; they are peculiarly prone to undergo putrefaction; and that, during this change, they yield, among other products, both nitrogen gas and ammonia. When exposed to a high temperature, ammonia is, also, generated in great abundance, by their decomposition; little or no acetic acid is produced; and the coal, which remains, differs from vegetable charcoal, in being much less combustible. This general description, however, though it applies to most individuals of the animal kingdom, is not strictly true with respect to all. Animal jelly, for example, is rendered sour by spontaneous decomposition. A few vegetable substances, it may also be added, gluten for instance, become at once putrid; and furnish ammonia when decomposed by heat.

Sketches of Pioneer Baptist Preachers in North Oarolina.

BY JOHN W. MOORE, STATE HISTORIAN.
Memoir V-Rev. Lemuel Burkitt.

CHAPTER THREE

The man who by the grace of God, his own native greatness and the accidents of fortune, is enabled to play successively in the role of a reformer, is one of the noblest and most beneficent of human creatures. Though a thousand spurious pretenders and cranks have arisen in every age to bring obloquy and contempt on the nobler types, still the world will never cease to remember and reverence the wise and heroic spirits that have shown them the way to higher planes of thought and action. Suppose it were possible to strike off from the catalogue of mankind's social and religious privileges, those that resulted from the teaching and labors of Wickliffe, Luther, Jefferson and Gladstone, what a fearful outcry would as cend to hearen at the loss of so many things that make life worth living in this world! The miracles of human advancement wrought under the leadership of Moses were almost in every instance as directly the work of God as were those of our divine Lord and Saviour. To such complete revolutions in the affairs of mankind we would be impious to offer contrasts with those effected by the exertions of the greatest of our race. As heaven is high above earth, so far did they surpass the most comprebensive of merely human triumphs over the errors and abuses of preceding ages. While this is true, yet we should never forget or cease to reverence the great men who bave so largely contributed toward making civilization what it now is. The church militant also has been in every age largely indebted to such holy and heroic spirits. While remembering our Lord's promise that the Holy Spirit should be ever present to aid and sustain his people, we at the same time know that chosen res sels in human form have been the means through which such protecting power has been exerted.

When in October of the ever memorable year of our Lord 1775, Elder Burkitt reached the scene of religious conflict, amid the de!egations who had come to the Falls of Tar river were some noble coadjutors in the cause of reform. Chief among these in the galls; 1. He ame of rfectly in's dial consygen; :-action gulum of amged, by ,parent tted alh gave, is fluid
coagu-accordployed. itric $2-$ ich are gulum, Then.

* Thenarc
\dagger Philoso
ard finds, by been coågu

Aluin, pr albumen; t 500 of watc but no prec
4. Albun Jution of co latine or ml single drop weight of a some hours, sel. The s containing oi

Solution o whole of the is a compoul of about one the quantity pose entirel! the latter ; 1 cumposed, i

Nitro-mu the foregoin tered by th Nitrate of si cal, from its viate of gold zaining $\frac{1}{1000}$ dant dense c
5. Solution When an infl 100, is added no immediate tate ensues. lution of albu: not susceptibl tanned leathe
matter of personal influence was the venerable moderator, Rev. John McGlamre. This nobleman of nature as well as of grace was of Huguenot blood, and in the purity and beneficence of his life atoned for any want on his part of the larger mental gifts of his younger brother in the Lord, Mr. Burkitt. So loving and faithful had he been in his walk, that he had become more influential with many people than others of higher gifts as an orator and therlogian. His position also as presiding officer in so numerous a bods, through the last ten years, had given him not only weight in their councils as a trusted leader, but the added advantage that always can be afforded from the chair in matters it may please the presiding officer to favor.

But Mr. Burkitt's greatest assistant on this important occasion was found in the person of a layman, Col. William Horne then of Edgccombe, who was the grandfather of the late Hon. William Horne Battle, one of the Justices of our Supreme Court avd displayed great eloquence and no little skill in biblical criticism in his impassioned appeals for reform avd unity in the creed avd practice of the Baptist people. Col. Horne does not seem to have lingered long in the vicinity of the Falls of Tar river after this episode in his life, for we find him representing Bertie county in the lower house of the State Legislature in 1780, and for twenty years thereafter he was intrusted with the representation of that ancient and renowned constituency, sometimes in the Senate and then again in the House of Commons. It may have been that this very controversy in the Association inclined him to seek more congenial brethren further east. Elder Burkitt was further assisted in the debate by the Rev. David Barrow. He was a successor in holy orders to the late Mr. Sojourner in care of Baptist interests in Isle of Wight county in the State of Virginia. Mr. Barrow was, in some respects, a very considerable man in his day. Fluent and impassioned, he was ever impressive in his addresses to the multitude; but he lacked the power of analysis and arrangement, which were so manifest in Messrs. Burkitt and Martin Ross.

The church with which the Kelukee As-
6. Albume: sociation was then in session, was under the to be slow in 1 pastoral guidance of the Rev. John Moore. This rugged and indomitable, old conservasome weeks ition was a type and representative of the cording to Sc people, who so mucb admired and trusted him both in things spiritual and temporal.

SECT. If. His age, experienee and strong will made him the most fomidable of all the spinits that were then arrayed against the move ment for greater spirituality in the Baptist
luble in dilut centrated. 1 cid, Mr. Hat ble in water,
Many thec of albumen; pears to hav bumen he su and its coas with some of by some red When the w ic battery, a negative po This more have been 0 order to pro er, it shoulc sary to the

White of water. W ter, and th which is th tity of coag ulating por

When th strong galv tive cup; the positive and muriat grains of d line matter ed, of phos

From th may be ap men, whic way he pre eral anima ist. It has ulated by
*Syst
\dagger Phild
VOL. II
churches. It was all in vain that Scripture and argument demoustrated the faisity of his premises. It was enough for him and the men he inflneneed, thit the churches had managed to live in time past with their nuixed herd of saints and sinners; and he was eontent, he said, to let well enough alone. He despised innovations. He denounced them as dangerous and sure of bringing on discord and schism. He was supported in sueh objeetions by Elders William Burgess of Toisnot and Cbarles Daniel of Kelukee and John Thomas. The debate between Messrs. Horne and Daniel was said to have been especially warm and exeiting.
It was all in vain that Elder Burkitt and his allies called the attention of the body to the faet that in the confessions of faith adopted by all Baptist churehes and the Kekukee Assoeiation, it was held that only upon a profession of faith in the Lord Jesus, eould baptism be lawfully administered to any candidate-that any other battism of unconverted men and women was opposed not only to Christ's eommandments, but to the plain letter of our confessed creed on the subjeet. The result of the debate was a seeession of the maleontents from the house where they had been in session and the institution of a rival body, whieh still laid claim to being the Kehukee Association. Reference has already been made to the fact that the Baptist churehes whieh thus in those aneient days so obstinately clung to error were the same whieh just half a century later, after their surrender of this lunacy were to again go in eclipse far more hopeless anl enduring, when in 1827 they revolted again against the truth and the light in their sinful and inexeusable warfare on missions. . This singuiar instance of the power of heredity in transmitting spiritual and mental traits from one generation to others far removed in the line of deseent has had its counterpart in the political history of our State. In the bloody troubles known in our history as the War of the Regulation, the rery same counties that were singled out and scourged with fire and sword by Gov. Tryon were, exactly a eentury later, the very head centre and chief arena of the Ku Klux Klan's operations. It would thus seem that eertain raees of men have as natural a bias to error and sehism, as others toward a dauntless and irrepressible spirit of resist ance to any interference with their eivil rights and liberties.
en conitric aas solu.
julation ject apty of almatter, turation nfirmed 3rande. \dagger galvanund the ve wire. pears to uired, in al pows neceskali and the wae liquor, ill quanhe coagkali. osed to a he negaumen in free soda nett, 500 were sa-mentionof soda. ;alvanism s of albuIn this le, in sevsed to ex3 is coagfect even
even the albumino electricity

The ter sense, unti parts of an: nite meani the same s er. The 1 is soluble i the gelatin prove that properties, tine \ddagger Fol be consider an enlarge mouth, the ral, all the pose, from tion of nitr they are mu

The subs was the sali appearance ture of this and suffered

No distin adding nitro galls. Gou after some t ed by the tal decided and Tan is a mos gree, affect but not of jel

* Philosophi \neq Nicholson

Thus in his twenty-fifth year Lemuel Burkitt, by the help of God and his own great exertions at last had succeeded in breaking down the false barriers of pride and obstinacy which, for twenty years past, had arisen, as a great Chinese wall, dividing the hosts of Baptists in the Kehukee Association from all fellowship with those of other similar American organizations. He must have been saddened beyond measure when so many men he loved arose and went off from the great christian fold that he and they had so much delighted in building into grander dimensions. Like all men of high, natural genius, he was thereby more capable of grief and depression. He had succeeded in committing the Kehukee Association to what he knew in his soul was truth and true Baptist usage ; but the grand organization was left wounded and maimed by the heroic treatment it was necessary to administer for its salvation. The dejected and defeated partizans of errcr had acknowledged that the reformers were the true representatives of the Kehukee Association by their revolt and secession. The residue of the faithful left with the old historic body were all the more valiant and effective from the fact that all discordant elements had thus voluntarily gone off to themselves. Men like Col. William Horne were seen leaving their homes to find congenial spirits in the reformed churches. Peace reigned in all the Baptist circles of old Albemarle ; but a far different order of things arose in the seceding churches. The wiser preachers and laymen made their conferences stormy with their well foanded complaints of the fatal mistake made by their delegates at the late Association. The peace that had been dearer to Rev. John Moore than even the truth as it is in Jesus, utterly failed of its realization in the miserable issue he had done so much to bring about. Instead of peace flowing like a river around him, like the infatuated and mistaken Greek of old, he had but sown a crop of dragon's teeth to spring up and divide every church that followed his dévices, until, ten years later, $1: \mathrm{ke}$ repentant prodigals, they were to return to the fold of love and abundance.
Elder Burkitt had, like all his clerical brethren in the Kehukee Association, confined his duties as pastor to the single congregation in Bertie. The unfortunate habit of frittering away their usefulness on four or more different churches had not obtained
proposed antities of

d general

 omponent nore defications of each othfe, which 0 assume voured to train of nal gelaclaim to term, is ates the in genehey sup-proporpowever, mists. re made, on. No emperaporated, e. cus, by sion of y, and, producublish 2 elatine. any demucus, ntrary,SECT. IV
foothold in North Carolina or indeed any. where else. This system, which the later
which dis by either

Hither
a method compoun is, that m common' to say, ho causes.
lead and the muria of saliva, grains we of the tral not coagy

In ord Mr. Bran this view termedia
i. fig. 82, the other Fibres of In about was form positive. va, thous alkali too disposed ate of soc subject, 1 by farthe

When terial cha substance ter. Ne lation, it

Fibrid mals, and eminent divine, the Rev. Dr. J. B. Jeter, used to denounce as "ecclesiastical polygamy," is one of those unscriptural innovations of later days. But while thus cunfining his relations to a siugle chafge. he was not the less abundant in labors. He made excursions in many fields that the light of the gospel had not yet illumined, and thus not even the Cumberland settlements of the future State of Temnessee and Kentucky were too distant for the missionary whose home was so close down by the waters of the Atlantic ocean. No railways were then in existence to bear along the Lord's messenger as with the ru-h of the cyclone. Not even a lumbering stage coach had jet been utilized to connect the men of the western frontiers with the civilization of the past. By means of the Watauga trail, first blazed out by Daniel Boone, re could reach the "dark and bloody ground," just south of the Ohio river, but so iugged was this highway of the to of the early settlers, men generally made ity. With the journey on horseback. Such a journey undertaken by a traveller was as foil if bodily perils as it was of the lontliness ar only (see and hardship in locomotion. Prowling he bands of Indians from the great prairies between the Mississippi and Ohio rivers were ever and anon gliding like phantoms through two others. their former hunting grounds, to bear off to captivity and death every pale faced intruder they could find beyond the reach of the \log-forts of the white settlements. Nor were sart of salithe Indians of that day the only source of danger to such men as were unwary in their selection of lodging places, when the shades of coming night warned them to sheek shelter for the wayfarer and his steed. Cutthroats and villains of the blackest dye not unfrequently erected cabins on the trail for the special purpose of murder and robbery of the nisguided guests who listened to their treacherous offers of hospitality. Mr. Burkitt, no doubt, gave such terrors as this last transparent but small consideration, for he well knew that men of his calling bore charmed lives in all such dens of guilt and blood. No murderer was so ignoraut and stolid as to dream atter. of finding money on the body of a peripatetic preacher. And besides this, there was some mysterious awe and consideration in the hearts of the vilest of the human race for such a man toiling on and being spent on his mission of love and mercy. Strange and almost miraculous tales were told of irts of anihow some unseen influence would stay the 1ot affected uplifted hand or ward off the bert directed
coagulum
none on the paration of Brande is and murisole of this illustrated
eat, no main cold wa. tive distil-
\qquad r

to devise a rcus in any this kind to contain impossible se separate acetate of ist both of 000 grains ich twenty the mucus nucus, was occurred to vessel in r only (see he positive, apparatus. he soluble
parts have been from blood, by ing water upon

For the purp Mr. Hatchett o 15 days, in wat ing such as no
rifle-shots from the persons of the heraic Xxa : heralds of the Cross. One such was said to have deliberately ventured iuto deadly peril ined to carry consolation to a dying sincer who bourasked for his presence. He thought he was alone in the stillness of thè night, but assas sins lying in wait for his return reportedhents, that a horseman rode on either side of their
intended victiou and this frustrated thein intended victio and thas frustrated their uring
purpose.
to excire putretacivi.: were then boiled for five hours every day, during three weeks, changing the water at each boiling; and, finally the residue was put into a press, and dried by the heat of a water bath.
Fibrin has the following characters.

1. It has a white colour, and is destitute of taste and smell. It is soft and elastic, and becomes of a deeper colour, on drying.
2. It undergoes no change, when exposed to the air in a moist state; nor is it altered by being kept under water.
3. When heated, it contracts, and moves like a slip of horn, exhaling at the same time a smell of burning feathers. Exposed to a stronger heat in close vessels, it yields water, carbonate of ammonia, a thick heavy fetid oil, and carbonic acid, and hydro-carburet gases.-It leaves a larger proportion of charcoal, than remains after the decomposition either of gelatine or albumen.
4. It is insoluble in water, ' except by the heat of a Papin's digestor, and also in alcohol, ether, and oils.
5. It is readily soluble in acids. Sulphuric acid dissolves it and acquires a deep-brown colour ; charcoal is precipitated, and acetic acid is formed. Muriatic acid converts it into a green jelly. Acetic, citric, oxalic, and tartaric acids, dissolve it ; and the solutions, when concentrated, assume the appearance of jelly.
6. From acid solutions, alkalis precipitate fibrin, in flakes, which are soluble in hot water, and which resemble gelatine in properties.
7. Diluted nitric acid separates a larger quantity of nitrogen gas from fibrin, than from any other animal substance. The dissolved portion, when concentrated by evaporation, and again dissolved in hot water, is precipitated by tan and nitro-muriate of tin, and possesses, therefore, the appropriate characters of gelatine. A larger digestion of fibrin in diluted nitric acid converts part of it into a kind of fatty matter, which swims on the surface. This concrete oil contains a considerable redundance of acid, from which it may be freed, by melting it, once or twice, in water. From the residuary nitric acid a proportion of oxalic acid may be scparated by evaporation.

SECT. IX.
smell; it dis boiling wate tates. "The bines readily alkaline cart able quantit! ed compoun are not muc of uric acid cretions fou
2. Nitric the skin of : and nitroge evaporation ly distilling decompose a strong sm deposites c monia. O ammonia,
3. Whe weight of a but a new drops of th monia, wit tained. It
II. The ite from th under the this sedim lime, a pe blance in fers chiefl having lit of gold of properties and its ex gree que:
III. T

Vauqueli slow eva! appearan

Sketches of Pioneer Baptist Preachers in North Oarolina.

BY JOHN W. MOORE, STATE HISTORIAN.
Memoir V-Rev. Lemuel Burkitt.

CHAPTER FOUR.
The war of the Revolution was a great interruption and obstacle to many others of the godly laborers in the Lord's vineyard besides Elder Lemuel Burkitt. So direful grew the struggle in parts of North Carolina that even the pitiless soul of Col. Banastre Tarleton grew sick of such butchery as marked the forays of David Fannin, and declared in his memoirs of the period, that another year, such as 1781, would depopulate the state. While the Albemarle region was almost wholly exempt from such evils, still British outrages at Suffolk in Virginia were so close at hand that the alarm that was occasioned led to the suspension of the sessions of the Kehukee Association for several years. Many church-members of that fold were either in the Continental army, or they were enrolled under the standard of Gen. Greg. ory. It was during these stormy years of blood and confusion that a great bond of love and confidence was formed between Mr. Burkitt and Godwin Cotton. So close was this tie, the great preacher bought a farm alongside that of his friend and brother in the Lord. They were nearly the same age, and to both the cause of the Baptist people was paramount to all other human affairs. Not that either felt for a moment in any way indifferent to the freedom of America. On the contrary, their brightest hopes for the emancipation of their faith were bound up in the success of the revolted Colonies. With the overthrow of King George's control in America, they had much reason to believe there would come at the same time the downfall of the Church Establishments all over the Republic. Gen. Washington gave nob'e testimony to the united and zealous support given him in his seven years of perilous combat, and as the first President of the United States certified to the world how they had been alike strenuous as soldiers in the field and in yielding loyal and unquestioued fealty to the revolutionary officials in civil affairs.

When British violence and brutality toward the people of Suffolk and its vicinlty had with_other. reasons resulted in the sus-
parts of recipi1 comith the nsider-saturaturates, ination he con-
h stains nic acid ed. On epeatedwholly ed ; and ary fluid e of amluriate of fourth its ric acid;

A few of am, are obharcoal. a deposdiseases, . Proust, osplate of its resemrves, difwater; in g muriate r, that its chemist; some de-
ircroy and I which, by ; a brilliant regetable
blues; is sc which it sep in heated als neutral salts er acids. I it precipitat। mercury, or monia and p IV. The which the a one eighth; ter to the re lime combin by oxalic ac: state, dissolv ence of hol When the a mains pure.

This acid tallized, anc alkalis and and zinc, wi the oxides o semblance proved that tity of extra disguise its,
V. The sugar of mi acid, and di leaving it tq this, the lic forms, whic It may, a in a stoppe short time, over, and gracluaily se The powder saccholactic

This acid water. Of
pension of the sessions of the Kehukee Association, the heart of Mr. Burkitt was wid owed of many of its chiefest joys. He not only pined for the presence of so many to whom his soul was knitted. The valiant soldiers of the Lord, who were still waging a dubious conflict for emancipation in Virginia, as well against the ecclesiastical tyrants at home as the King beyond the seas, no longer met in annual conclave to concert measures with their Carolina allies. All his many plans for missionary concert of action among the preachers and the churches were in complete abeyance. To that reverend father in the Lord, Elder McGlamre as the Moderator, and to Mr. Burkitt as the Clerk, the Kehukee Association had committed authority to call another meeting whenever they should think such action prudent and proper. For some reason now unaccountable in its strangeness, the chapel of St. John in Hertford county was first selected as the place where the session should be held in October, 1782. Capt. Arthur Cotton, the father of Mr. Burkitt's peculiar friend, as one of the chur ch wardens of old St. John's, had given his consent to the use of the Episcopal chapel, but just before the arrival of the delegations, Col. Robert Sumner, the other warden, made such violent objection to what he said would be a profanation of the ancient fane, Capt. Cotton invited the Baptist people to hisown spacious brick residence. There under the shade of widespreading mulberry trees, arrangements had been made for the confort of the delegates and visitors. The village of St. John's and the many farm-houses of Ahoskie Ridge gave ample entertainment to all the many good people who gathered there to rejoice over the renewal of old Kehukee's power and usefulness.
Just a year had gone by since along with all true Americans the Baptist people of the Kehukee churches first heard the glad tidings of Lord Cornwallis' overthrow at Yorktown. The ablest and most effective of all the British commanders had, after a noble career of victory, at last came to such entire defeat thas the seven years of war were virtually ended. We can not in our day appreciate the feelings that actuated our forefathers on that occasion. In our plenitude of power and safety from all apprehensions of invasion from foreign nations, we fail to remember how feeble in comparison were the thin settlements strung along the Atlantic seaboard With all the conjoined dangers of Indian and servile insurrection,

m arabic
added to the bloody work of the British soldiers and Tories, the wonder is that men could be found brave enough to risk such an aggregation of perils. But the men who thus dared so much to be free, were not to be balked in the line of duty by any sugges tion of evil to come. They had an unfaltering trust in the God of battles. They felt assured of that divine protection promised to all who, in the direst grief and danger, put their trust in the Lord. Had they been modern agnosties with their sneers and heat, and y doubts, they would have prated about the crystals. A quantity of rable propo
VI. The animal fat. ton. To h quicklimé, towards the found to ha boil them t separate o This salt is may be se pose the of again dry, luted with tained by itate solub

1. The smell. It
2. Byd partly ded
3. It ur dissolves
4. Nitr tic acid.

Accord merely ac this, how which is I hogs' larc solution, $]$ tate, whic No acid :
maxims which tell us that God is neutral in such human complications, and that the sole arbitors of every conflict at arms are the heavier battalions and larger purse of those who may be so fortunate as find themselves possessed of such advantages.

The war had largely circumscribed, during its pendency, the area of Mr. Burkitt's activity as a missionary. With the return of peace, he put on a double portion of that wonderful activity that was so largely characteristiz of the man in every portion of his career. Like his noble compeer in grace, Elder Silas Mercer of Halifax county, he was no longer to be circumscribed by State lines. No pent up Utica should longer confine his powers. Strange peoples and unknown lands were to be now visited and thrilled by his eloquent appeals. This same distinguished Baptist divine, the Rev. Silas Mercer, was present at the Association of 1783. He was one of the foremost preachers ever born in North Carolina, and the great crowds gathered beneath the spreading trees at Mulberry Grove were enraptured with his splendid discourse on Sunday.

Another of the foremost American Baptist preachers was seen and heard on the same o ccasion in the person of Elder Abraham Marshall of Georg.a. He was the son of that Rev. Daniel Marshall whose life and services were commemorated in the preced. ing memoir. With broader culture and a more finished elocution, Mr. Marshall was even more powerful in the pulpit than his honored father in his palmiest days. But be or some one else brought great loss to North Carolina by inducing Mr. Mercer to leave our limits and make Georgia his future home.

With the return of pesce to the American people, Mr. Burkitt was further cheered by the continued applications of the different revolted churches of old Kehukee, which had gone off on a tangent at the Falls of Tar river in 1775 . Soon the vast christian brotherhood had with hooked shields again formed
ervesces salis and slactates. weight of 12 a salt solution. at a red-le-shaped siderable conside-
species of it of Guyulverized g the heat d will be of water ; d salt will Jacic acid. n which it to decomand, when c acid, dibe ascera precip-
enctrating
icid, and is
nitric acid
ble in ace-
escribed is Besides erved, and ot distilling The watery ky precipiin a retort. atter in the
retort, there arated, and solves it, an

The seba out smell; mus. Whe saturated wi copiously.
lead, and ni form soluble barytes, or's er temperat it resembles
VII. Th sition of ani of blood, cv with one pal calcined in the material must be con issues from to be extin mass, when few hours; the liquor, as it acquire of two parts ing water: or precipitat boiling wate of a quantity sulphate of bluc colour. lieat. In thi consists of a perties have

Fromi pre

 the followingMix two o acid, with for the mixture their phalanx of old. But the body got to be so huge and unwieldy that in 1790 the Virginia churches withdrew and formed the Portsmouth Association. A year or two
be sepely clislater the churches around Newbern followed this example in the formation of the Neuse Association. These movements curtailed the amount of Mr. Burkitt's lators as Clerk of the Kehukee Association, but the favor of his brethren soon more than restored the sum of his labors by making him the historian of the great Association he so much loved. We have only to read the chronicle he was thus induced to prepare and compare it with the rapid and jejune continuation by other hands, to see how remarkable a man he must have been. Confined by the directions of the committee who had the proposed history in charge to a mere skeleton of a narrative, he yet managed to store it with many incidents of movement and in his terse style was always abounding in pungent and pertinent observations. The little fragment, meagre as it is in size and detail, is still the only source from which we can recall the Baptist movements in eastern Virginia and North Carolina for the period em-
braced in its parres. Thus as leading preacher and man of affairs in the Kehnkee Association, besides his great role as reformer, Mr. Burkitt had bargained out into still another great department of usefulness. It was thrice fortunate for his own fame and memory that he thus left his imperishable record; for great as he was without this book, we should have but a mutilated tors, instead of the full statue of the man. No doubt many traditions would have handed down to after generations dim glimpses of his power and usefulness, but at best these would have been rague and shadowy.

But Mr. Burkitt had great sorrow along with many of his brethren that the late war had so completely steeled the hearts of the people to any religious influences. It was all in vain that the most moving discourses were delivered in the hope of a revival of religion. It seemed, on the contrary, that French skepticism and atheism were poisoning and blighting the hopes of heaven over a large part of the new Federal Union. France had given such noble and timely aid to the suffering Colonies in their late struggle that great love and gratitude was felt by all the American people for their late gallant allies in the bloody struggle. This sentiment, so natural and honorable in itself, was used by French emissaries of the infidel

is withn of lit5 water olves it ury and it, and of lime, a highiculars,
compoe parts mixed h,) and illed by fination e flame likely row the soak a Filter as long mposed of boilescence es with addition it of the eautiful gentle which Its pro-
ated by nitric ind boil shak-
of expiratio: pose for whi bout twent quantity tak of Messrs. with little it only admitte of carbonic considerabl bonic acid state of the tity of oxyg cording to t carbonic ac been prove lows that a have been it has unite be doubted the vessels to have pre er generate of that fluic most proba The only take place tain quanti the substit
When, ho
Pepys ha tion; but replaced b of nitroge and oxyge proportion may be re tution of r considera edge alto Beside
philosophers to debauch the minds and souls of the trusting American people. Alas! the task seemed but too easy when in place of the old trust in God doubt and blasphemy were heard all over the land in the little debating clubs which were organized to spread abroad this foreign contagion It was allin vain for Lemuel Burkitt to expect God's blessing on a people thus perverted aud apparently undone. When the Associations met, there was only a meagre list of addi tions to the churches to be reported. He gives these reports for a number of years, and so small were they that the luss by death and dismission must have more than countervailed such small gains. The future of America seemed overcast with a hopeless gloom. Men of God were on every side depressed and with ouly one hope left. They never forgot that "Christ is able to save to th uttermost part of the world," and they trusted, in good reason, their hope would yet be realized.

At last came tidings from Tennessee an 1 Kentucky that the Lord had visited his people. A great pentecostal season of refresh ment and conviction flowed in upon the new countries like some mighty tidal wave of God's grace. The careless and skeptica! multitudes came flocking by thousands and myriads to find the Lord they had learned to doubt and neglect. The gieat spiritual revival of 1801 and 1802 is jet one of the wonders of our history as a nation. From dead apathy and distrust of all things hearenly and pure, the same communities a woke to newness of life. From the Atlantic seacoast to the wilderness beyond the Mississippi, the great tide of grace rolled on, and America was saved from the foul embraces of a creed which had already deluged France in blood and ruin.
The glad tidings from the West filled the soul of Mr. Burkitt with such joy that he mounted his horse and set out for the theatre of such glorious blessings. How, as he went on his way, he found the great gatherings of men and women sceking the way to life; and how, through both of the new States, he thrilled so many thousands with the magic of his eloquence and zeal, is yet a household tradition in many a family whose ancestors found peace in his preaching and prayers. He had long prayed for the coming of the Holy Spirit in all his power, and lo! here was what surpassed and dwarfed his loftiest dreams. Thus in a continuous
he purfion, abe the riments expired, ng once ber cent. eatedly, of carhen the a quanme, ac, to the acid has s, it foln , must rtion of owever, coats of upprsed not rath carbon to be the
roved to of a cerhed,) and acid gas. Allen and combinahas been = addition hydrogen the same ras found, he substia fact of ar knowl-

[^7]* Philosophical Transactions, 1808.
†. Philosophical Transactions, 1809. lingered until, when duty called him home, from the he came back with a light in his face that atmosph had never been seen there before. He was it may b like Moses when he descedded from Sinai, Until lat the glory of the Lord had not yet ceased to ed in the drogen of the blood; but this hypothesis is inconsistent with the experiments of Messrs. Allen and Pepys, which have traced the whole of the oxygen into combination with carbon. It is probably therefore nothing more than the condensed vapour of a portion of that fluid, which is ordinarily secreted into the bronchial cells.

An important purpose of the function of respiration is, that it contributes to that equable temperature, which the animal body preserves, amidst all the changes in the surrounding medium. This is peculiarly the property of living matter; for all other bodies have the same degree of heat with the substances that are in contact with them. In the human body, the temperature varies only a very few degrees from 96°, whether it be exposed to at cold of many degrees below the freezing point; or whether it be surrounded by an atmosphere, little short of the heat of boiling water. There must, then, be certain processes in the animal economy, by which, in the former case, caloric is reduced from a latent form to that of temperature ; and, in) the latter case, by which the great excess of caloric is absorbed, and prevented from becoming injurious by its accumulation.

Though we are ignorant of those precise differences, which constitute the distinction between venous and arterial olood, or in what way the function of respiration converts the former into the latter, yet a fact of considerable importance, on this subject, has been discovered by Dr. Crawford. The capacity of arterial blood for caloric he found to be superior to that of venous blood, in the proportion of 1030 to 892 . When, therefore, arterial blood is converted into venous, a considerable quantity of caloric must pass from a latent to a free state, and must prove an abundant source of temperature. Now this is precisely what is constantly taking place in the body. Caloric is evolved by the combination of the inspired oxygen with carbon; but as the capacity of blood for caloric is, at the same tin - eniarged, its temperature is not raised by being thus arterialized. In its progress through the system, the blood again suffers a diminution of capacity; and the caloric, which it had carried in a latent form to the remotest extremities, is extricated, and applied to the support of animal tem-
perature.
the lungs, imals, plac important not go on; from this : under suc takes plac a loss of v Journal, x

It is not mospheric skin throu portion of : ed that the bonic acid. fluid trans]

The blo mal econo a variety o tial to our is derived cles, whicl enable us
same sour perform a chine. T orated by secretions. the busine ble to disc gous to th in many st albumen, imate eles gone fartr ultimate manner a sis, which of the an: ble prody

> Sketches of Pioneer Baptist Preachers in North Carolina.

by john w. moore, state historian.

Memotr V-Rev. Lemuel Burkitt.

CHAPTER FIVE.
The treatment of historical subjects is largely subject to the same rules of weaturent that regulate a painting illustrative of some event in the past. Thus we find the artist gives prominence of place in his grouping and the highest sights to the chief actors in the scene he depicts. On the same principle in our reproduction of the Baptist past in North Carolina, we must give Lemuel Burkitt all the space and position his unequ tled services merited. It takes more space to tell the story of such a life because it was so much more frequent and abiding in its influence for good. He had brethren, no doubt, who were as zealons and faithful as be, but the measnre of his deeds and achicvements so far surpassed them all that comparisons would be simply odious. Indeea with the single exception of the great work of enlist ing Baptist support in the cause of Foreign Missions and Education, he had left nothing to be added to the completeness of his work as a reformer. Nor was he to withhold his aid from those other st-ps for higher usefulness and consecration in the individuals and churches. He was to align himself along side of Martin Ross, when that great preacher introduced ais first memorable resolutions into the session of the Kehukee Association held in 1803, whereby they were exhorted to put themselves on the same level as had been lately witnessed among the Brptist people of Kettering in England. Dr Carey had gone on his way to seek the lost millions of British India, and Andrew Fuller was left to lead bis people into a proper support of the new apostle to the Gentiles. Americau Baptists had manifested great interest in the salvation of their [ndian neigh bors, but that they owed any duty to heathen nations beyond the seas had never suggested itself to their minds. it required just such leaders as Ross and Burkitt to bring on so great proposals. Of cours \rightarrow the old conservatives were there in force to protest against the Lord's work, simply because they and their fathers had not found it their duty to help in the conversion of the heathen
sive in
In anded the od does derived ie body I which sated by polson's
on ats to the ed in a certainof carwatery
tus.
the anirepared e essenje blood te muslevers, e to the s, which thed manes clabtermed ledge of were as analors. But lance to he proxust have iting the in a new f synthebstances 1 vegeta-

Of the Sect

1

Saliva

 the mouth, mastication tute of sme Its specific cording $t 0$ pared its ct forty parts fore no effe siderably. and, during interval.*Saliva, w ly a very st plates; or, mains, crys air, it appe sistence, w

There is through wa two fluids t tained, was ymuriate of some hours liquid nearl. striking effe been severr precipitated liquor. Th extract, and Dr. Bostock rin) Meeting Honse in August. 1803, it was also a quant supposed there were four thousind people. To the quantriere was a stage erected in the meetingproximation house yard, and at about half after eleven o'clock Elder Burkitt ascended the stage to

[^8]preach, and it was expected from the appearance of the clouds it would rain every
and his exl
a knowledg siderably ; and someti It is seldc in it a cer present in is filtered, emits the fords an This extr are found and phosp All the large quar from each no picrom in human stances.
lowing:
Water
Yellow m
a variat
Yellow m
Albumen
Resin
Soda
Phosphate riate of

The ye that of od ter, but which it which it to dissolv itate from If bile

* These but as thei corrected b
mount, and before he was done preaching it did so. Yet notwithstanding, the numerous congregation still kept together; and al though every effort was used to shun the rain by 11 nbrellas, carriages, hankets etc., yet we believe one thousand people were exposed to the rain without any shelter; and some crying, some convulsed on the ground, some begging the ministers to pray for them; and they composedly stood and received the falling shower without ever being dispersed."

This was in all truth a severe tes: upon Mr. Burkitt's powers in holding the attention of his congregation. Very rate have been the iustances of such unusual influence over a mixed multitude. It proves conclusively that he was in leed a great orator. Yet those who heard him preach said that his voice was far from being strong and sonorous. He was of medium height, wellformed and active in his movements. So much was he loved and trusted by people of all creeds that in the State Convention called to meet in Hillsboro in 1788 to consider the propriety of adopting the new Federal Constitution, he with no solicitation on his part was chosen along with Maj. Samuel Harrell as a delegate to represent Hertford county. He had been so uniform in his support of the American cause and so firm in his adhesion to the more democratic views of Mr. Jefferson and his supporters, that it was safely left to his discretion to determine for his constituents as to what should be done in the premises.

With iucreasing years beginning to warn him of failiag strength, Lemuel Burkitt, after his tesurn from the revival in the West. only redoubled his previous zeal and labors for the Lord. Though not yet an old man so far as the lapse of years is concerned, be was yet sensibly feeling the results of ceaseless labor. The night was close at hand when a long rest would be his. He who giveth his beloved sleep had one more great work for the faithful servant, and then like Noses on Pisgah, all the weary load of toil and lesponsibility would forever be lost in the peace of God. The famous query tonching the duty of the Baptist churches then constituting the Kehukee Association as to Foreign Missions had developed in the ensuing years plain proofs of a wan: of unity and homogeniety as between the congregations east and west of Roanoke river. While
accurate aries conh ycllow, ery bitter. uspended imes even When it thick and less, it aff the bile. he salts as sulphate, firon.
from it a separated ite of lead, ient found saline sub. Ire the fol-

atrace.

4.5
-

0

similar to ; very bitohol, from zalis, from rs scarcely n a precip-

Brande has
cueil, i. 57 ;) witl best lie e, where
tin Ross was too great for open opposition to a scheme of love they both so warmly advocated, yet there were such delays in action and such cold comulendation from most of the churches lately returned from their temporary revolt, that the two great preachers, along with Hon. George Ontlaw of Bertie, were convinced that if the Albemarle Baptist churches ever expected much christian growth and development, then it was time to sever all entangling ties with the torpid and lifeless crowd that only hung as an incubus on their best efforts to advance the c ause of the Lord and his people.

Moving on this line, petitions were sent up from the Albemale churches to the Kehukee Asnociation as it met in session at Meherrin in 1805 Then and there the great body, sisce known as the Chowan Association, had its origin. It was in the next year that the first session was held, and from that day to this the mighty results on the one hand wrought by the new body, and the schism, slow decay and total non-effectiveness of the other, show how wise and timely was the movement. If Burkitt and Ross had been gifted with such length of years as Methusaleh, and the leavening power of the Chowan churches had still in the clear vision of old by sheer force of higher zeal and faith kept this people from the ruin and downfall of 1827 , it would have been accomplished at great cost. Not only would many a noble step taken in reaching a higher plane of usefulness been checked and retarded by the crowd who could see nothing good beyond what was practiced by their fathers, but the wear and tear of souls thus chained to a body of death would have realized something of the Apostle's torture when he cried out in his anguish as to who should deliver him from such tribulation. There is no curse greater to any christian sect than churches which are so lifeless and avaricious, that they were ever found as stumbling blocks in the way of others who are anvious to give tbemselves and their means to the Lord's cause. The human heart is never so cunning and remorseless as wben framing excuses for withholding any bestowal of its hoarded treasures. Men who are apparentlv godly in other respects, find their shibboleth on such an occasion. With all their sighs, on such an occasion. With all their sighs,
groans and loud prayers in public, they find it impossible to part with that accursed gold it impossible to part with that accursed gold
that has stolen their souls from the Master. Elder Burkitt had planted a new church
acids are e

Biliary

 fers in diff which is r entirely de so much t undergo ni ture they 1 ducts, giv! is phospha and in alc they are F riatic acid Hence the ties identic and of hurThe cal tively exa that they kalis, and of their di de la Sallt cipitable, terwards especially rcady dest Of the of formed of pocirous. from 88 to substance. their inte blackish b nally were there wer Calculi fr the gall-b) We ma calculi of that others
found that soda also a
hosphoric tions difs of bile, h they are yellow of it. They temperaimal proter which in water om which iling muem green. s properof oxen,
re attengh known at the alon. One Poulletier and preurcroy afhem, and s been al-
aber were tirely adi5 , besides colouring yellow in bt, with a but intertly white, watero those of
ne of the cire; and addition
of a quantit brown. K the yellow same subst

The mily Mammalia considerabl the followin It is an o. tinge of blu varies occas imal. Its s] ing to Briss

The milk gents that d to three pro

1. The c rer it has ste an oil ; is s the same m : days, it beco in which th cheese is su

When cr churning, it by the nam same prope This chang the cream w though perh excluded.

Butter ha At the temf state for sol it ; its trans time render kept longer it is in part

Association move off on that noble and illustrious career which, under God's providence, $h_{\text {as }}$ resulted in so many blessings to the Baptists of the whole State. He served as its Clerk for the two years he was spared to

1 or dark fer from be the
his people, but his lngg strvice in the sime capacity in the o!d Kehukee made his soul still yearn for the presence and companionship of miny that he loyed very lenderly. It was thins that he inissed no session of the venerable mother of somany Associations. The greetings were as warm as of old, and on Sunday the erreat crowds of people listened with a strange nwe and delight to a preacher they had long thought the greatest in the world, and yet here he was aflame with a strange light in his eyes, and his voice thrilled with a burden it never bore before. Overflowing with the greatness of the issues at stake and the shortness of his time in this worid, he would descend with streaming eyes from the pulpit, and, falling on his knees. be would beseech his hearers t) be reconciled to God.

The premonition of coming death was one of the strangest iucidents in the life of this extraoroinary man. He was but fifty-seven y yeurs old and apparently in health, but the f inner voice was repeating ever and anon;
"Labor while it is yet day, for the night cometh wherein no mat can labor." The event abundantly jastified the correctness of these mysterious premonitions. He was preaching in July, 1807, when in the midst of his discourse he was seized by au ague. The end sure enough had come at last. They bore him in mucli live and tenderness to his humble home and were soon to bear him to his grare. Like Charles II., he never rallied from the fatal effects of those awful chills that slew so many thousands before the world and the doctors had learned the value of quinine.

Thus passed from the theatre of his usefulness a most richly and variously gifted man. Ia thirty years he had managed to bring about larger and more lasting improvements in the eastern Baptist people than all his predecessors had been able to accomplish in the century preceding. He was not one of those men who was great on a single line of human excellence. He was no more eloquent or successful in the pulpit than he was deep and accurate in his theological stores. With a strong bias to pmotieal fancies, he could yet make as deep and subtle an analysis of any chain of reasoning as if the impassioned images of his vision nerer led to
the class differing dmits of

a slight

 ful; but f the an: accord340. tly by anents in. milk afo erties of cloth in or some jft solid, 1 that of ocess of: 1 known ctly the cream. pation of s place, le air isistence. t in this te from
le same may be
ble that
jutes to
the preserv as an anima

When m certain subs it undergoe scparation i whey. Thi acids, and b . etable juice of the iuner lation by ac form, with t solution tha always to co been prodec thus account the infusion greatest usefulness after all were the personal inagnetism and tact hat enabled bien to win all hearts and they keep them in spite of the fact that Le was so often bronght in temporary antagonisin with such friends as he pressed on his way as a reformer of abuses. It was seen and known that thongh only the Gleri, of the Assacia tion, yet it was Lemiuel Burkitt's will and schemes that were the rule of all the great christian body. Tet no one ever resented or denounced this powerful control exercised by a subordinate officer. It was accepted as a matter of course and the reformer was thus left to go on his way rejoicing. But these and all things else earthly were become things of the past when the Rev. Aaron Spivey as the preacher of the funeral sermon, and his sorrowing brethren far and near, gathered to bury his remains out of human sight. "A great man and a prince in Israel "had fallen in his armor". He had served long and nobly, and in dying had left not his like in all the land so abundantly blessed by his life and labors. crown, coagt of sixty pou $\because-$ - yünaty nu -uagrolating matter cannot in this case exceed a few grains.

The curd of milk, when pressed, salted, and partly dried, composes cheese. In good cheese, however, there is always a large proportion of butter, which is enveloped in the curd, and is not afterwards easily separable. Curd, therefore, for exhibiting its chemical propertics, should be prepared from milk, which has been deprived of cream, and should be made by the intervention of remet. It is a white solid substance, insoluble in water and irs alcoliol, but readily soluble in pure alkalis, and precipitable therefrom by acids, though in a state more like tallow than the original curd. During solution in alkalis, a strong smell of ammonia is produced ; and hence curd appears to be converted, by their action, into volutile alkali and fat. Liquid ammonia also dissolves curd; and it appears to be soluble by the pure alkaline earths. From the resemblance of its properties to those of the coagulated white of an egg, Scheele was induced to regard cheese as identical with albumen; and it is not improbable that if the curd could be obtained perfectly pure, their properties would exactly agrec. By the combustion and calcination of curd, it appears, however, to afford a larger proportion of phosphate of lime and other sakinc substances, than is obtained from the coagulated white of ati egg.

[^9]† Hholland's Cheshire Report, p. 263:
water, a nu ed, resemb the weight action of t : and to the bonate of a section on
From th may be se hol, and d rated. Its stated, by or one hall tains a nur muriate of Muriate of along with separated riates, at a is to be r cold, depo are the phe of phospha

Along w up by the shown, by in muriatic benzoic ac that of hert worth extr forms abou

Albume riable prop temperatu This is in resulting ; coagulated dissolve th allumen is by heat and

North Carolina.

BY JOHN W. MOORE, STATE HISTORIAN.

> Menoir VI-iben. Martin Ross.

CUAPTER ONE

"The kingdom of God cometh not with observation" was the declaration of our Lord. There were myriads of men in many different lands waiting and watah:ng for the signs which were to disclose the advent of the long expected Messiah, yet the star of Bethlehem was an unheeded signal to all save the three wise men of the east and the humble shepherds of the fordoplain. The Pharisee, set and rooted in the nest of his own preconceptions of the pomp and splendor necessarily attendant upon an eveut so august and potent in human affairs, disdained the thought that the King of the Jews could be identified with the puling baby, making his entrance upou life in the cattle stalls of a wil'age inn. It was the same incredulity that led this sect thirty years later to mock at all the miracles of a Saviour who had been so long kuown as a village carpenter. A great feature in Christ's visit to this world seems to have been to mortify and banish from the hearts of his people all such vain and selfi:h expectations. We often find the true successors and representatives of these ancient self deceivers in persons who have fixed up in their minds the way they will find release from their consciousness of sin and want of acceptance with God. Some expect to be converted by some manifestation from heaven almost as miraculous as that by whic Saul of Tarsus was arrested on his bloody errand to Damascus. Others more reasonable a wait less significant manifestations on the part of the Holy Spirit, but with all their evident thirst for deliverance, we invariably find that such people are the last to be blest in the richest seasons of revival. But let us be thankful that not even stupidity and obstinacy are proof against the infinite mercy which sees and pities our poor human frailty. "If any man thirst let him come unto me and drink;", cried the Lord Jesus to the listening multitudes, and so says he to-day even to men and women who would dictate the manner and style of their receiving pardon from the burts of heaven.

deposit-
of $\frac{5}{8}$ or $\frac{7}{8}$ d by the o urine; the car(see the
led urea, vith alcoly evapohas been he urine, idue conf potasif, ammonia. dissolved, of being The mule, which n, when s, which onsisting
o, taken may be pouring onsists of 1 ; but in as to be on that it
very vae boiling ns in it. mmonia contains c acid to ortion of tion both fusion of
galls, by a shank, to :

Sulphur serves, blaı are detach hydrogen : been kept

The san ered carbo: arise from however, tl compositio source, al! by Proust By the dec and this, 1 would doul ence of th quently ha adding mu thus indice

The ace had discov they were which he ϵ not a little fresh extre ter by dilu grow thick acid being produced I

The put somewhat urea, whic! nate of am precipitate uniting wit settles in \mathbf{v} salt is the large a par contained i deposited,

Such a line of thought was suggested by the- life and conversion of Martin Ross, whose career in this world will form the subject of this memoir. A lad born in seclusion and comparative poverty amid the dense swamps which then fringed both banks of the Roanoke river, and then at the earliest moment of his fitness for military life going off to mingle in the carnage and confusion of contending armies, would appear to bave slight prospect of usefulness in the future, so far as christian beneficence was concerned. His alternations of labor on his father's farm near Williamston, and then months of toil, exposure and evil connections amid the net fishermen of the Roanoke, were a poor school of morals at best, but counted as nothing when contrasted with the countless temptations and sinful examples encountered in armies so largely composed of French infidels and atheists. Yet a youth thus exposed to so many dangers of soul and body was, by the help of God, not only to survive the perils of the battle-field, but almost immediately on his return to his old home, he found the pearl of great price.
We have in the life of Rev. Reuben Ross, a brother of Martin, a vivid picture of the old Ross homestead and of life on the Roanake in those far off days. It seems that one William Ross had come as the first of the name, and made his home on the same farm near Williamston. He left a son, also named William, who was bora Aug. 9th, 1731. Nine other boys and girls, beside Martin, made full the quiver of this pious and prolific old man, the second Wm. Ross. He, was a member of Skewarkey Baptist church; and held with unquestioning faith all the extremest Calvinistic teachings and deductions on the subject of predestination. It would be amusing if so much that is tragic and ruinous did not mingle with the story, to tell to what lengths these well-meaning people carricd their deductions of the fact that God has foreknowledge and control in human affairs. That men had at the same time been left in possession of their own wills in such matters, was as entirely ignored as if Christ had never taught the truth, that men are free to accept or reject his terms of merce. With a fatalism that would astound even a Saracen dervish, these uitra Calvinists said it was "love's labor lost" to teach the way of life to their children. If they were of the true elect, then it was, they said, forestalling the work of the Holy Spirit to be thus attempting to save a

Cruick-

id, he ob-

 and scales phuretted which hasad discovles which tlle doubt, m the dethe same ne, found een kept. formed; in urine, onal presfor it freormed by atic acid:
agined he sing, that processes y urine is istilling a hous matinning to excess of resin thus tor.
changes, n. The to carbofids, and mmonia, t, which 1. This kitutes so gelatine lakes are ic acid is

SECT. V.
generated, carbonate of appear, ther putrefaction

Some im shank, resp ent diseases by heat and blood. . Wh the liver, th small in qua portion of pi In inflamma albumen. I deposited a nute quantit! and some p of jaundiced discoverable was remark: had scarcel

The com classes of ai of all anima uric acid is which conta That of the milky after bonate of lii of magnesi urine of $t h$ holds in sol potash.-Tl the same pa Vauquelin,

Urinary that of the occasion a remedy. I tion, till the ny other su towards ace
ressel perhaps consigne do eternal wrath 20% from the foundation of the world. Thus be yond regular family worship there was scarcely a semblance of effort to mould and direct the moral growth of their own offspring. They were left to follow their own devices as to how they should spend Sundays It was a matter of small concern to old Mr. Ross, and men of his ilk, that his boys forgot that the Sabbath was not to be profaned. If they drank too much apple brandy on these Sunday frolics, it was set down as only an incident of youth and indiscretion which would be all forgiven when, in his own good time. God should call the prodigal from the error of his ways.
The koss family lived just east of the town of Williamston on a farm then known as the "Islands." It was so situated that great advantages were obtained as to rear ing and fattening live stock. William Ross found that the rich bottom lands of the Roanoke were a mine of wealth in their many sources of food for both hogs and neat cittle. The never failing supply of reed forage and the great crops of acorns and other kinds of mast sustained his cattle and hogs of themselves, and corn was only used to keep them gentle and mindful of human help. A low, rambling house built around a large central room, with a huge, wide spreading mulberry tree shading the front door, were the chief elements in the rural landscape containing the old Ross homestead. In that humble and unpretending home of simple, homely abundance were to be reared three ministers of the gospel. Two of them, Martin and Reuben Ross, were to attain great usefulness and influence in their separate fields of labor, while their brother James, in an humbler sphere, was to be no less zealous and useful. That so many of William Ross's sons thus became so useful in God's service, shows h w much more pregnant and coprincing is a pure and consistent christian's life than oceans of advice and admonition, wanting the proper sanctions of sincerity in the monitor. It is breath wasted for an inconsistent parent to talk morality to a boy who is aware of how such things fail to influence the life of him who thus essays to show the way to holiness. The father who dogmatizes and utters loud prayers all the week and still can not visit the stores on Saturday without getting fuddled with bad whiskey, rather disgusts than edifies the boys he would seek to influence for good. Oid Mr. William Ross took just the opposite course. He walked close with God and let his example alone plead with the youths he loved and
ate and osphate 1 by the Cruick1 differ. npletely 1 of the state of d to be iderable Proust.) led with ie urine very miof lime, he urine hich was al urine onts, but
> different he urine but the urine of oic acid. ecoming h of carrbonates
e. The ic acid, uriate of through roy and cid. urine is dd which s and its omposi; on maIf steps acid in
yet only aided as to council, in his prayers made in their hearing, that God would yet in his own good time give them "the peace that passeth understanding." providence, free-will and that soul fatalism he stw overshadowing the life of his honored father. His strong, natural affections in earlier jears might lead him to accept as true any gloss, however monstrous and incredible, that he got from William Ross; but that keen, undaunted intelligence that was in late Jears to make him immortal, early began to question many of the deductions made by the fatalists in their pretended amplification of Paul and Calvin's teaching on the subject. When in the stress of the Revolutionary war, Mr. Ross had sent Martin to join his iw o older brothers, John and William, on the tented field, the future orator and divine found a new school of lasting impressiveners. His ideas and emotions hitherto had been colored only by the hints he received at the old-field school and in the godly lives of his parents. In the army he found every day experiences showing the contrasts of strength and weakness in humat character. He saw men grown to be veterans in the ranks who jet trembled and sought every means to avoid going into actual battle. On the other hand were a multitude that would be grieved and shamed if accident kept them back from the post of duty on such an occasion. He saw these same men freely volunteering to make up a forlorn hope, whenever their commander thought so bloody and dangerous a resort should be used against the insolent foe. He heard all shades of ecclesiastical teaching mooted and discussed around the winter camp fires and much to weaken his faith in Calvinistic fatalism. The Methodist chaplains and the reformed Baptists never grew weary in expatiating on the love and mercy of Christ for all our race. That his atonement was for all conditions and tribes, and that peace awaited every weary and heavyladen soul that would really accept of Jesus. Such great Baptist preachers as John Gano, John Leland and Jeremiah Walker in their addresses to the troops preached a religion so much broader and more merciful than the iron-clad tenets Martin Ross had been hearing at Skewarkey, that his soul acquired a breadth of love and faith in the world-wide mercy of God that could never again cramp itself into the gloomy and hopeless fatalism of his parents.

When happily in 1781 the young soldierat

KHAP. XXIE

 he ordinary since ascer ts have been of Fourcroy however, to ies of calcunemoir, not by the simterwards the nunicated to quęstionably
s numerous

 be the only this sort, is lime; amex; and an o the earthy te of lime ; \dagger hority which that any of e predomiits peculiar ould be ase been conaree genera, Ive species. rences have Is for specifery purpose r heads :o-magnesiaa
late of lime;
operty from
f very rare the charag-

SECT. VII
branes com quantity o them. By earthy mat

The sca compositio are moren of alternate

The skin on the outs of blood ve Between th called rete

1. The separated f not soluble centrated to kalis howe agulated al tinge from
2. The c number of considerabl water entir inates on co verted into

The true tine; but u water. It two import: ception of t
3. Of th the skin, on continued a in the negr

Hair has lin. He ef pin's diges quired, hov was decom oil, and sult sort of bitur
the age of nineteen years returned in peace and safety to his home on the Roanoke, both his own soul and those of the famly weut out in gratitude to that protecting provi dence which had not only shielded him from death in battle, but had brought him back without wounds or any of the diseases that wreck so many strong men in camp and hospital. He had not as yet wade any open profession of religion, but the matter was not to be much longer ifeferred. Before the year was out, he was baptized as a momber of Skewarkey church. There, young as he was, the congregation were edified and astonished at the mingled grace and power of his modest and-short addresses in conference. He soon yielded to bis impressions of duty and requested the church to give him license to prexch the gospul. They not only did this, but at an astonishingly early period in his life and ministry called him as their pastor.

In the thick veil of obliviou which Hes for ever hidden away from all human knowl edge so much of the lives and transactions of even of the greatest men in North Carolina, we bave lost all the details of how Martin Ross, under so many disadvantages, yet made himself the great pieacher of after years. We are left to inagine how the strong native intelligence was alternately exalted and then grew almost desperate in his struggles for more light. It was vain to seek aid of the illiterate brethren he met in Union Meetings ; they coald not venture in exegesis bejond the plainest of bea'en paths in their limited filld of Bible construction. Some had read Dr. Gill's opinions on some of the deep things in Scifipture, but as a rule not evien so great a Baptist authority as the eminent English commentator was known to men who set the aselves up as the spiritual guides of a people almost perishing for want of higher light and knowledge. Such perfunctory guidance of his people could not for a moment satisfy the conscience of Martin Ross. His clear, unclonded vision saw all the defects in himself and hisound that older brethren who were trying to break the bread of life to the still more ignorant people. With great wrestling in prayer and close study of every literary aid in his reach, the rich natural endowments soon began to show increased linstre as the result. A wonderful young preacher, they said one and all, as the speaker warmed upinto enthusiasm in the progress of his discourse. A flowing and yet severely logical style cionosching was voL. II. the charm that delighted, and at the same
posited a dissolve portion of
chemical contrary, omposed
embrane one, full nsibility. lubstance , is best 3f. It is atly conne. Alwith co= a yellow
ists of a and has oiling in h gelatdly con-
of gelaluble in mals for y the re ue.
it part of intly long
\qquad ng a Pature rethe hair eumatic tained a that of
spiritual needs. It was an elocution that grew more finished and powerful as the orator waxed greater in knowledge and experience. And thus he went on from one degree of grace and strength unto another until of grace and strength unto another until
all eastern Carolina was ringing with his
praises. praises.
il, the ariatic a preSilver id of a

brown.

A diluted solution of potash dissolved hair, excepting a little oil, sulphur, and iron; and the compound was a sort of soap. The oil, if red hair was employed, had a yellow tinge. Alcohol, also, extracted from hair a portion of oil, the colour of which varied with that of the hair.

The coal, obtained by incinerating hair, afforded phosphate, sulphate, and carbonate of lime, muriate of soda, silex, magnesia, and oxides of iron and manganese. The whole of these substances bore a very small proportion to the hair, and varied in hair of different colours. Hair, therefore, appears to consist chiefly of an animal matter resembling coagulated albumen ; of an oil of various colours ; of sulphur, silex, carbonate and phosphate of lime ; and oxides of iron and manganese.

Fieathers probably agree in composition with hair. The quill, Mr. Hatchett has shown, consists of coagulated albumen without any gelatine.

The composition of wool is not accurately known; but from its forming a soap with pure alkalis, it probably consists of coagulated albumen.

We are equally ignorant of the true nature of silk. It is insoluble both in water and in alcohol, but dissolves in pure alkalis and acids. By the action of nitric acid it affords the peculiar substance already described under the name of the bitter principle.

SECTION IX.

Of the Substance of the Brain.

The medullary matter of the brain and nervous system appears to differ from all other organized substances. It was first examined by M. Thouret, with a view to explain why the brain was exempted from the change, observed in the bodies which were interred in the Cimetière des Innocens. Fourcroy afterwards added many important facts, and corrected M. Thouret in several particulars.

The medullary substance of the brain is of a soft consistence,
and forms, wh es through thi perature of 16 men is separa but the coag' takes place \mathbf{f}_{1} alcohol, it los tion, which h the form of l : are obtained cire ; but dif temperature mains in solu ter or by eva]

The medu: goes spontan passes to the time without effects upon i separated; b of carbonate in the retort.

Diluted sul another part. ed by evapor: are formed w salt, sulphate: phates of sod: When brail agulates and increased, am acid formed a A portion of c hydrogen gas affords traces

Sketches of Pioneer Baptist Preachers in North Carolina.

BY JOHN W. MOORE, STATE HISTORIAN.

> Memorr Vi-Rev. Martin Ross.

CHAPTER TWO.
The Rev. Martin Ross did not at once leap into that leadership and control of religious affairs, as was seen in his great friend and cotemporary, Lemuel Burkitt. His early opportunity for social and literary culture had been inferior to that youth's, reared in the superior wealth and refinement of Chowan county. It was thus several years after Martin Ross had begun his career as a minister of the gospel before we find any mention of him in the history of the Kehukee Association. But this modest and proper delay on his part in assuming a leading part among the preachers and laymen of so great a body only enhanced his power, when after years of patient observation and preparation he made known the mighty resources of his mind and soul in the great Baptist conclave. Burkitt saw with much delight that here was a debater as skilful as himself in all the resources of synthetic and analytic treatment of the most exalted and abstruse prob lems of theology. He further recognized in the flowing and magnetic elocution, the sonorous tones, the pleading ejes and sympathetic bodily movements, elements of power that surpassed even hiz own resources in such respects. That another great religious orator had come to share his honors and influence gave the true man of God never a twinge of jealousy or uneasiness. He loved the cause to which he had devoted his life too deeply for any such sinful and unmanly feelings to find lodgment in his heart. He and Martin Ross, on the contrary, became loving yokefellows in the same great lines of development and progress for the Baptist people. In all the efforts for advance and higher living among the Lord's people these two were ever found with interlocking shields pressing resistlessly on against the advocates of discord and delay. Mr. Ross, like other Baptist preachers of his day and generation, was largely given to making preaching excursions in the different outlying sections of country, that were still near enough to enable him to reach home in time
it pass-
tem-
albu-
acids; which
d with
se porling in which adipohigher ch reof wa-underfore it. a long same gen is lantity found
ulates
ntratystals es this phos-
it coheat is bonic nonia. retted which
for his regular appoinfmeats at skewarkey. Some of these trips were doubly blessed. Both the missionary and the people were the better for his visitations. To the comparatively rich and cultured denizens of the countieslying between Chowan river and the Atlantic, Martin Ross seemed a gift from heaven. They always heard him gladly, and handreds found the pearl of great price under his ministry. Many of the wealthiest and exclusive families that had looked with disdain on Baptist preachers and their doctrines were at last seen humbling themselves before the Lord and casting their future lots with their despised neighbors.

In such a community Mr. Ross found that the Baptists were quite a different people from the gloomy and iron clad fatalists he was vainly seeking to lead into a more loving and gracious estimate of their Creator. While fully agreeing with the old Baptist tenet as to predestination as a necessary part of God's foreknowledge, he yet remembered the fulness of our Lord's offers of mercy to every one who would come and drink of the waters of life. He could not set down as unmeaning so many of those gracious and unlimited offers of the Master, simply because the Apostle Paul, in the course of his argument, had asserted that God, from the beginning of the world, had foreseen who would be saved. It seems a monstrous perversion of the whole tenor of our Saviour's career of loving benefactions and continual forgiveness of injuries and sins, that he should in advance decree the damnation of the least of his creatures. But it was all in vain that Martin Ross reminded his Skewarkey people of the fact that free will was left to every human creature, and it was thus the fault of the negligent and not that of God that men found no mercy at his hands. This church, with those at $\mathrm{Ke}-$ hukee and the Falls of Tar River, were the centres of the baleful hyper-Calvinistic fatalism. They rolled this doctrine as a sweet ne conumis or me water: ma whan mor
morsel u or their tongues, and felt much of the o] Pharisee sentiment of contempt for all π were not numbered among the elect of λ.

It must have been a painful task for Mr. Ross to sunder his pastoral ties with the people he had known from infancy, and who had bestowed on him so many touching marks of their love and confidence. He had found peace and been baptized in this very fold. These people had been swift to perceive and encourage his gifts as a young preacher. His stern but faithful father had

MINEKAL
ters, and t subjects acquaints class of therefore ninute deof bodies. in the exof life ; a ufficient to I shall alysis, but afford an ion, of the ubstances
ater, it is attentivehe neighstions recar should ether after must be e quantity sible qualso best asthe water containing ture, filled rature. It

SECT.
case, sulpha 40.)
3. Baryte der.
4. Nitric little water composed; monia, be distinguishi appearance,

These aci cations as th recommend that contain sulphurette sues on add latter, a slie becomes le cipitate of s that this is

The oxa: rates from

1. If a milky on a air through we may infe found pure
2. If the boiling, the
3. If afte any of them casioning a acids decon lime, preve 88.)

The oxa formed by s 2 solution 0
died in the same fold in 1801. But with all these things to sadden him, Martin Ross felt in his soul that his work was to lie elsewhere in the future. Influences beyond his or any other human sagacity had tied up and circumscribed his influence in such a way at Skewarkey that he was forced to the conclusion that some new man should take the place he held. It was thus that the great preacher at last freed himself of the last incumbrance upon his soaring spirit. Passing over the broad waters that divided old Albemarle from the more western settlements, lie went to the church at Yeoppim. It was almost like entering upon a new and higher stage of existence. The strong man in all his genius and power felt how much stronger he grew with a multitude of sympathetic souls sharing in his glorious aspirations for a day of better things among the Baptist pecple.
Burkitt and his allies bad done great things for the churches, but there was still pressing need for advance along other lines. Not a letter or a delegate had ever been seen at the Kehukee from Sandy Creek or any of the Associations that once formed a part of her constituency. There was not even the semblance of fraternity, much less any concert of action, between the great bodies of Baptists thus enrolled in separate and almost hostile camps. With that keen, natural sagacity, which was one of Martin Ross's leading feaiures of mind, he selected the recent extension of missionary work to foreign fields as the lever to lift the discordant divisions of his people into unity and fellowship, though all christendom was ringing with conflicting comments upon the great work undertaken by Dr. William Carey. Though a great impulse was pervading m.riads of christian souls in different lands, as yet no man had gone from America to aid the brave and godly Englishman who, in despite of so many opposing influences, had yet begun the work of saving the souls of men and women "sitting in the region and shadow of death." While all Baptist traditions and records showed how, in spite of the most cruel and bloody laws to the contrary, the old preachers had passed from land to land, and though often imprisoned and burnt at the stake, these heralds of the Cross were still found faithfully prosecuting the work. In fimerica there were nut unly the heathen Indians but many outlying settlements in the wilderness to tax the best energies and resources of a poor people in the work of their evangelization. As so much was yet to be done at home in America, the
al, xviii.
ite pow-
in very
are de-
ure am-
ar. For ie of this
ne indibas been waters tain only itate en; in the je water is a premoludes
it sepa-
become blowing ass tube, yet been hot after
d. xcess of rom oc= lise some xalate of rs, page !
zasily be :alis with tion, and

1. Thr whether tain state present i being di tate so m very pre the color recedes ed earth cise com ly be gir
2. Pu monia, v dissolve when a
3. C 2
4. \mathbf{P}

Beside liquid t precipit cess of
5. C
it does
to ascer
other dusky and almond-eyed races swarming on the opposite side of the world, had not entered at all in the matter of their convictions of duty. ' But the Lord was opening the eyes and hearts of his people to the fact of the universal brotherhood of mankind, and Martin Ross was the first man in North Carolina to urge upon his people their duty in helping to send the gospel even to the faroff Asiatic multitudes.

It was thus that we find in the session of the Kehukee Association in 1803 that the matter was brought to an open issue by the following query offered by the Rev. Martin Ross, "Is not the Kehukee Association, with all her numerous and respectable friends, called on in Providence, in some way to step forward in support of that missionary spirit which the great God is so wonderfully reviving amongst the different denominations of good men in various parts of the world ?"
Let it be remembered that Martin Ross, born and reared in the darkest haunts of fatalism, was yet the man to take such ground nine years before Judson and Rice had started to India. Of course, so important and exciting a matter was bound, under all the rules and precedents of old Kehukee, to undergo many ordeals before reaching anything like approval from the Association. Mr. Moderator, the Rev. Jesse Read, referred the whole matter to a very select committee, including the leading ministers of the body, with instructions to report at the next annual meeting their impressions on the subject.

This was the beginning of a great work in Baptist circles in North Carolina. Its first effect was a prodigious stirring up of the dry bones in the congregations beyond the Roanoke. Here was another step in advance proposed as to the Lord's work, and that was enough to set all the old-fashioned conservatives in solid opposition. The Association, held at Meherrin in 1804, not only answered the query in the affirmative, but appointed delegates to meet others invited from Portsmouth and Neuse Associations at Cashie church in Bertie. There was inaugurated the movement which, long afterwards, resulted in the formation of the North Carolina Baptist State Convention. As was eminently proper, Mr. Ross was chosen to preach the introductory sermon at the Cashie Convention.

This memorable body convened on the third Sunday in June, 1805, and Revs. Lemuel Burkitt, Martin Ross, Aaron Spivey, Jesse Read and John McCabe were Kehukee's representatives on the occasion. The Convention proceeded to formulate plans for

CMAP. If
Yet even with muriit must be A precip-
be known, the oxalate carbonic acrucible. he give 100

I find to be dding carvessel, ob-
nd metals. only in cerine may be po, without is precipiafford any hts. From re white, or e precipitatand its previll present
basis of amhe salts are s it exhibits ight near. fects.
tallic salts. hour to any lution; the d by an ex-
except that ns. Hence, ion, add the
the establishment of regular contributions for Home and Foreign Missions, but made
carbonate of a the liquor; ra ammonia. It presence of m tria, and gluc they have nev ence can scar

1. Lime-w: detecting cart acid be mixed be present, ei ly appear, w gain be disso
2. Lime-w mate by a bri mon arsenic will occasion which is very mixed up wi garlic smell

IX.

1. A solut water in det more portab earth, the ba ed. In disć similarly to manner, a pr ic acid.
2. The ba acid and its soluble in mi test. The q weight of th
3. Of the of hydro-sul quicksilver 1
no formal report to the Kehukee Association of the results of their labors. This grew out of the fact that when the year 1806 came, the Chowan Association had been formed, and to this far more sympathetic organization the leaders in the work belonged. Elder Biggs, in his continuation of Burkitt's history, says no report ever reached old Kehukee. This may be true, but we yet know her churches sent up funds repeatedly for missionary purposes to the General Meeting of Correspondence, year after year, until their final adumbration in 1827.

The debate in the old historic church at Meherrin must have been one of the most inspiring ever heard in this country. With Ross, Burkitt and George Outlaw to uphold the cause of missions was to insure a glowing and exhaustive presentation of the reasons that had led to the introduction of the query. It is not astonishing that with such advocates the stolid and inert tide waiters on the other side of the question should have but little to say. They were in fact, as a class, men of very few words on any occasion. If they could be induced to listen to argument and entreaty, it was to very little purpose. To reason and Scripture, to eloquence and persuasion, they simply opposed the vis inertice of their moveless natures.

But whatever of grief Martin Ross may have felt in the want of sympathy of such people with things so dear and momentous to him, be was largely compensated in the spirit so opposite to all this evinced by the churches of the new Chowan Association. Unanimity and enthusiasm were accompaniments of every appeal to their souls for longer interest in the extension of Christ's kingdom of this world. The zeal and devotion which have all along marked and ennobled the record of this great christian body, led the people to accept the plain letter of our Lord's latest command without ever a doubt as to their duty in the premises. Christ had told his people assembled on Mount Olivet to witness his ascension, that ${ }^{\text {t }}$ beginning at Jerusalem they should preachects as a the gospel to all nations. Mr. Ross had only aroused and fastened their attention on a plain matter of duty. Like Carey and Fuller in England, the preachers even had to be reasoned with before seeing the full weight of fealty they owed in the matter. The torpor and forgetfulness of God's people in this great responibility they owed the heathen fin was passing away like a nightmare of the past, and nations were making ready to be- stones of the swarming millions of the far-
cither of these off East. The car of Juggernaut might still and, on shaki roll on in its deadly course over the crushed Silver is sipee
2. The mr bodies of his dupes, but the days of such fatal delusions were numbered. Deliverance long delayed was coming at last. principle of e .

$$
07 \text { lind } \quad \cap \square
$$ rom it. plate, immersed in a solution of sulphate of copper, soon acquircs a coat of this metal; and the same in other similar examples.

XI.-Sulfihate of Iron.

This is the only one of the sulphates, except that of silver, applicable to the purposes of a test. When used with this view, it is generally employcd for ascertaining the presence of oxygen gas, of which a natural water may contain a small quantity.

A water, suspected to contain this gas, may be mixed with a little recently-dissolved sulphatc of iron, and kept corked up, in a phial completely filled by the mixture. If an oxide of iron be precipitated in the course of a few days, the water may be inferred to contain oxygen gas.

XII-Sulhhate, Nitrate, and Acetate of Silver.

These solutions are all in some measure applicable to similar. purposes.

1. They are peculiarly adapted to the discovery of muriatic acid and of muriates. For the silver, quitting its solvent, combines with the nituiatic acid, and forms a flaky precipitate, which, at first, is white, but, on exposure to the sun's light, acquires a blueish, and finally a black coiour. This precipitate, dried and fused by a gentle heat, Dr. Biack states to contain, in 1000 parts, as much muriatic acid as would form $425 \frac{1}{2}$ of crystallized muriate of soda, which estimate scarcely differs at all from that of Klaproth. The same quantity of muriatc of sifver (1000 parts) indicates, according 10 Kirwan, $454 \frac{3}{4}$ of muriate of potash. Dr. Marcet's experiments and my own indicate a larger product of muriate of silver from the decomposition of dry muriate of soda, viz. not less than 240 yrains from 100 of common salt. Hence 100 grains of fused muriate of silver denotc 41.6 of muriate of soda, and about 19 grains of muriatic acid. A precipitation, howere:, may arise from other causes, which it may be proper to state.
2. Ihe solutions of silver in acids are precipitated by carbonated alkalis and earths. The agency of the alkalis and cartls may, however, be prevented, by previously saturating them with a few drops of the same acid in which the silver is dissolved.

Sketches of Pioneer Baptist Preachers in North Carolina.
 by John w. MOore, state historian.

Memoir VI-Rev. Martin Ross.

CHAP'TER THREE.

The soul of Rev. Martin Ross must have been overilowed with thankfulness as he witnessed the growing usefulness and zeal of the new Chowan Association. This christian organization, which at once became the pride and hope of the whole denomination in North Carolina, exhibited so many signs of sympathy and support of the plans Mr. Ross was formulating for greater unity in the Lord's work, that like one of old, he "thanked God and took courage." But in the mysteries of providential ruling in the affairs of this world, a great loss and sorrow was close at hand. Just as the full blessedness of the work he and Burkitt had accomplished was made plain to the meanest capacities, the great preacher, who had done so much to aid him in his plans, sickened and died. It was like David, heart-broken over the fatal tidings from Gilboa, when Nartin Ross fully comprehended that his chief brother in the Lord and hearty coworker in all good things was sure enough acead and at the end of all his many labors. It' y was indeed a cruel and inexplicable loss to t.he surviving partner in the Lord's work. He was hardly weak enough to do, as so many others in similar circumstances have done, in his sorrow and confasion suffer doubts and resentment to overcloud the clearne ss of his trust and faith in the goodness of God. Such men are only staggered in their perception of the wasted plans and hopes crushed in such calamities. As they realize how well even the greatest of men An easy been sugge which fully dissolve the solution of : phosphoric : For this pur with a portic per, for a fe magnesian s to contain m

WOL. II.
can be spared from the teeming millions of earth, the old faith and confidence replace the shatows of doubt and sorrow, and the future plans are rearranged.
It was so with Mr. Ross. God had taken his chief helper and friend, but a multitude of less effective and loving assistants were left to do what they could to supply the loss. His brother, Rev. Reuben Ross, had also grown into fame and usefulness as a preacher. He was to become a great light unto on a pathe regions north of Nashville, Tenn., and in the southern parts of middle Kentucky. He, too, turned from the extreme Calvinis- Ispected tic features of the Skewarkey creed_and was svapora:
heard proclaiming the same great doctrines of love and hope for the human race that
tion. No F soda is adds dried in a tı dred grains muriate of 1 ty of crysta illustraied the discourses of his elder brother. The old homestead in the Islinds had been forsaken years before by John and William Ross and they were living also in the great West. Another brother, Rev. James Ross, went over into Bertie and planted the church which still bears his name. The old life of alternate labors on the farm and then of exciting weeks, as the young men captured the year's supplies of shad and herring from their nets in Roanoke river, still went on as

Muriate of alkaline sometimes exists in th of a few sp detected by all the thre
for those s: effervescer

With re ash may be ly and imn is not affec by its sme while it ha

To estin any water real acid " cid saturat

This so hardness o out any c es a milk from the a tolerabl owing to a water ar than it has metallic s ters, whic

Alcoho
when Martin was a boy and no great wars liad called him to the tented field. The village of Williamston with its single straggling street and the Skewarkey church were both as sleepy and lifeless as ever; but Martin Ross was in the thick of a battle thatexcited his soul and mind as much as did the thunder of the guns at Yorktown and Eutaw Springs.

With a mind that delighted in system and organization, he was stretching all of his great powers, mental and physical, to the task of triumphing over the inertness and often mistaken conservatism of Baptist brethren all over the State. He saw what a power for good was already created in the Cbowan Association; what limits could be set to a similar body embracing the organized Baptist hosts of the entire State? His dreams were not confined to a simple embodiment of the churches for promotion of missions. He longed for more light to the preachers and the people. No man better appreciated the blessings of education. He knew that ignorance had been the handmaid of superstition in all ages of the world's history. Though Wake Forest College was to be for many years still a thing of the future and no positive efforts were made for its establishment, still in the labors of the Rev. Lutber Rice in building up Columbian College at Washington City, Mr. Ross saw the beginning of the end for which be prayed.

As the years went by and tidings came of the wonders Adoniram Judson was bringing about with God's help in Burmah, the earliest of his North Carolina supporters felt his soul lifted up with joy and thankfulness. When in 1803 he had dared to set this ball in motion, he was almost alone in his faith in such things; now great societies of many differing creeds, in widely-scattered nationalities, were contending in noble emulation as to which should do most for the salvation of the dusky races. Even the cold worldli-
cear
phate of et this be Dne hunbut 66 of ft quanti-
presence cur, have of potash he water nate was ace. Of ndicator; able with
alis, pot2 distinctunds, and iscovered àlumine
present in weight of phuric a-
mparative ed, witho it produc. ure ; and, fill derive s effect is present in er affinity farthy and ty in wa-
in of about

むECT. II.
which are al ed native mt monly are in substances, a them in that both, an ore. metal is foun The copper 1 phur, and the copper.

Method of e

A miner any previous red to one of general kno minutely.
I. To asc matter, let state of fine ly with 30 ti 130°. Afte the bottle or a funnel. y filtering pat whole be ac than the joi tering pape the decreas

In certair of boiling , of solution.

Should ti going expc proportion ter be laid
II. The their insolu uninflamma
ness of the rulers of the British East India Company was relaxing under the blessed results they saw effected by Dr. Carey and his successors in that field of labor. 'Instead of jealous and hostile criticism from the reviews and newspapers, the press was true to its great work of education and enlightenment, and thus warm words of commendation were seen replacing the late diatribes of such men as the Rev. Sidney Smith. The home governments were no less changed. They were no longer alarmed at and opposed to the whole system; they ceased to leave the missionaries to the tender mercies of any native king or other petty ruler who shonld see fit to murder or imprison the daring men who came on their way in despite of his threats. The missionaries, on the contrary, were recognized as entitled to all the protection their citizenship might indicate, and the native rulers soon learned that these strange visitors were not to be harmed without a due penalty for such an outrage.

We have in this memoir dwelt more on Mr. Ross's labors and triumphs as an organizer and reformer in ecclesiastical relations than on his extraordinary gifts and graces as an evangelist. Like his lost compeer, Mr. Burkitt, he was so eminent in both respects, that it is hard to say in which particular department of usefulness be was greater or more successful. As a preacher, he was unmatched in all those thronging years of marvelous growth and advancement generally, which marked the first two decades in the history of the Chowan Association. In his comprehensive and exhaustive treatment of religious topics in the pulpit, there was something to be heard that reached the consciences of all his audience. Pride, prejudice and frivolity were arrested and so held up to the introspection of men and women concerned, that the last subterfuge and evasion were swept from their possession, and like Adam and Eve after their sin in Paradise, such sinners became fully a ware of their shame and peril. He was the first Baptist preacher in our State to make heary inroads upon the Episcopal and wealthy classes, Pride and social exclusiveness had almost barred access of Baptist truth to such hearts until attracted by the outcry of Martin Ross; these people ventured out to be amused, and in many cases went home happily converted to God, and for the rest of their lives became humble and useful members of Baptist churches. Such people were by no means rare in the beautiful peninsulas that lie north of Albemarle sound. The

re call-

 y comretallic at sets und of r, this hlphur. id sulore ofh is un-
without
e referattain a alyze it
saline in the peated120° or tents of aced on ler on a let the bly less the filred, and
portions difficult he foreind and hereaf-
ished by by their iching 5.

Harveys, Swanns, Porters, Skínners, Bakers, Blounts and others were rich enough to educate their sons at the great English universities and to deck their daughters in all the finery of the period. It was among such families that men like Mr. Thomas Brownrigg were won as jewels to shine in the Baptist coronet.

It was in this way that Mr. Ross planted that noble church in Perquimans county since known and honored as Bethel. He had been serving Yeopiu as pastor up to this year of our Lord 1806, but from this time until his death twenty-one years later, the new congregation was added to his responsibilities. Ballard's Bridge was never directly under his pastoral care, but still enjoyed the benefit of his frequent visits. He was indeed in virtue of his superior age and talents a real Baptist bishop, largely directing and controling their religious affairs in all the ancient domain known as Albemarle. It was like the loving oversight exercised by the Apostle to the Gentiles, who, in virtue of his part in the salvation of his people, claimed the privilege of advice and admonition in the Lord's work. To no council, consistory, synod or conference did he or Martin Ross look for his credentials in such relations. They both recognized and enforced tbe independence of the separate churches, while still claiming, as their fathers, in God the right to condemn all such sin and disorder as was found among the men and women of the churches at Corinth and Galatia.

The Rev. Martin Ross was given a lease of life just twenty years longer than had fallen to the lot of his compeer, Rev. Lemuel Burkitt. They were born about the same time and had so largely shared in the same plans and aspirations for their people, that their brotherhood in the Lord became a very close bond of union between these born leaders of men. As the new churches crowded in upon the Chowan Association, and that great body year by jear became-more. permanent in its influence in North Carolina, the only grief left in Mr. Ross's soul was the inefficiency of the body known as the General Committee of Correspondence. This consisted of delegates sent up each year, who generally met in Raleigh and transacted the small business affairs entrusted to their control. It was an abortive attempt by men doing the best that could be attained out of the obstinate aversion to change, that as a

1. A sor rule marked all Baptist movements of that and earlier days. He saw how far short ner (see page 240, , may un invi, evaporatca, ant ieft to cool
(E) Whe same solutic
(a) Precin of potash ; of carbonate may be sep which will d this solution itate ceases well with dis heat, in a c of alumine.
(F) Magr cess: Evap ness. Wei, dish,* more a sand-heat as to expel and digest it dissolve the lime, which ter, and drie deduct, from to Klaproth, tains one th:

If the lin the two sul crystallizing

From Kla cific gravity To saturate quired, or 1

The mag the carbona cipitate, afte an hour. It magnesia c
(G) If m (the absenc
*The bott vell, and his day, he had risen so far superior to its well, and bear ic acid.

NOL. II:
precipitate, be separated monia. Th washed, and the two eart better. "Surely the end of such a man is hs may peace." But alas! "the ctonug staff and the of ambeautiful rod were broken." The beauty and
strength of Israel had fallen in her high strength of Israel had fallen in her high places. The great preacher was in his grave ation of and had not left his like in all our borders. followed, recomme remaining in solution, may be precipitated by carbonate of potash ; heat being applied, to expel the excess of carbonic acid.

Magnesia and alumine may, also, be separated by succinate of soda, which precipitates the latter earth only. (See sect. I, xvii. of the chapter on Mineral Waters.)

When the solution of magnesia, of alumine, or of both, contains. a small proportion of iron, this may be separated from either or both of the earths by evaporating to dryness, calcining the residue, during one hour, in a low red-heat, and dissolving again in dilute nitric acid, which does not take up iron when thus oxidized.
(H) The insoluble residue (A) may contain alumine, silex, and oxides of metals, so highly charged with oxygen as to resist the action of nitric and muriatic acids.
(a) Add concentrated sulphuric acid, with a small quantity of potash, and evaporate the mixture to dryness, in the vessel described in the note, page 249. On the dry mass pour a fresh portion of the acid; boil again to dryness, and let this be done, repeatedly, three or four times. By this operation, the alumine will be converted into a sulphate of alumine and potash, which will be easily soluble in warm water; and, from the solution, crystals of alum will shoot on evaporation.* Let the sulphate of alumine be washed off, and the insoluble part be collected and dried. The alumine may be precipitated by carbonate of potash ; washed, dried, and isnited; and its weight ascertained.

During the evaporation of a solution of alumine, which has been scparated from silex, portions of the latter earth continue to fall, even to the last. (See Klaproth, vol. i. pages 66 and 75.) These must be collected, and washed with warm water; the collected earth added to the portion (b,) and the washings to the solution (a.)

Alumine may be separated from oxide of iron by a solution of pure potash.

From whatever acid alumine is precipitated by fixed alkali, it isapt to retain a small portion of the precipitant. To ascertain thes

* Klaproth procured crystals of alum from one fourth of a grain of alu. mine. The quantity of alumine he estimates at one tenth the weight of the crystallized alum which is obtained.
-An exam Klaproth, \mathbf{v}

13. Ores the solution be consider and will ret tained by e nitrate of an
14. Ores contained in cid, which d may afterwa take up the arise, if a ge liar smell, a exposed to t cipitated by becomes bla contain man acid, when o may be sepa which takes of an ore of and of a cob

Ores of n they impart (See chap.
15. Ores acid, which or in dilute if any iron h Then add c and uranium ammonia, w when dissol crystals of a

If copper by the amm much less: evaporation,
16. Ores
secms to be
vol. II.

Sketches of Pioneer Baptist Preachers in North Oarolina.

BY JOHN W. MOORE, STATE HISTORIAN.
seen in 579.) add to ali may metals, be ob till the metals, nitric a[he ore ich will icid will ts pecus paper is is pree, which scted to ilphuric ganese potash, nalysis 510;
colour w-pipe.
e nitric of iron: on ; or, by zinc. of zinc in pure This, oration, try side was filled with the fame of his knowledge. He early became a member of
the Baptist cuurch and in conference charmed all hearts with the ease and grace of his elocution.

As young Walker seemed deeply pious, it was no wonder that a people who rejoiced in such weak preachers as generally served our churchers of that day should have leaped to the conclusion that here was a chosen vessel of the Lord. Of course, a young man who so far surpassed all they had ever heard in his utter mnces on sacred subjects and who also professed to feel that he was called or God to preach the gospel, was gladly welcomed into such holy and tender relations. It was thus while still in his ruddy youth, ere the beard and bronze of manhood had visited his cheeks, that young Mr. Walker was ordained and set apart to the full functions of the gospel ministry. In his marvelous success in such relations, it seemed that all the haste and precipitation of his exaltation were abundantly justified. He went on to astound and conquer all hearts in the magic of his splendid oratory. Nor were the more needed graces of humility, zeal and devotion to God wanting in his conduct. As matchless as he was in the pulpit, the more trying ordeal of the fireside but the more endeared him to the purest and best of his brethren in the Lord. He seemed to them some miracle of grace rouchsafed from on high to lead them on in the green pastures and by the still waters of a higher life in the Lord. As they listened to his glowing addresses in church meetings or heard his ready and luminous expositions at home of the deep things in Scripture that had been so dark and inexplicable to them, they would wonder and ponder by what possible means this jouth, reared amongst their own anlettered neighbors, should have gained so much insight into the deep things of the theologians.

As has been intimated before in the preceding memoirs of this series, the Baptists and a vast majority of the other white people of the Colony of North Caroiina had relapsed into a state of profoundest ignorance so far as literary learning was concerned. Most of their preacbers had managed to learn enough to be able to read the Bible, because this was the one sine qua non necessary to their license and ordination. But what a pitiful stock of extraneous and yet necessary learning was theirs, to aid them in understanding and explaining to audierces still more ignorant than themselves,

OMAP. e form of a on the addiTo reduce dried blood, cible, which our at least. yness, with insoluble in tals, except muriatic ain cold, but only blue, rett's Analy. cal Transac. icient inforthe general. are of such em more in the best ex. Le Physique, Nicholson's
xxv.
02.

Phil. Trans.

Jrans. 1804. nd Vauquelina:
ch affords the and should alstrata, a-more furnace, with
ready been er again describ

The reduct ing to expel may be effect jecting the m : formed, may subsequent ex As many of application of flammable m: duced particle instead of sca fusible ingre the reduced of the crucibi called fuxes another end, attached to a separated.

The ores o metal, requir individual ca shall, therefo erally applice

The black part of nitrat which affords a fine light c hot crucible of soda, previ dered lime, o or 400 parts C two parts of p a part of chan The ore, afte three or four with a little be luted on, wind-furnace a very intens
would be such a commentator's understanding of Luke's enumeration of the nationalities represented at the famous feast of Pentecost. Such men,ignorant from the start as a rule, toiled all the week on their farms, with neither hope nor desire of higher attainments. The beggarly salary allowed them for their pastoral services was so small, that it scarcely entered into their estimate of necessary revenue as a support. They could say with the Indian, "If my preaching is poor, so is my pay." In the general poverty of the country at the time, the people were sorely put to, to get hold of money by any means. English merchants, to aid their own selfish schemes, had procured orders in the councils of royalty in London forbidding the issue of Colonial script, and there was $n s$ other circulating medium worth mentioning in the Colony of North Carolina. The steady drain of gold aud silver coin sent over the seas to purchase things needed by the wealthier families kept the Province entirely stript of the valuable metals. Besides this, the annual taxes had to be paid in coin after the suppression of Colonial issues of paper bills. We can, then, neither wonder at the smallness of the amounts paid to pastors or the poverty of means generally in the land.

In such a community and amid such clerical peers, Jeremiah Walker flamed up like some resplendent meteor on the bosom of a starless night." His zeal, piety, eloquence and affability to all classes made him a paragon to admiring thousands as he passed on his victorious way from county to county, and later, from State to State. It may be that some reader may incline to the opinion that this picture of the routhful divine is overdrawn. For the benefit of such doubting Thomases, the following fine picture of Mr. Walker is copied from the pages of Rev. Dr. R. B. Semple's History of the Virginia Baptists:
"The invincible energies of his genius towered abrve every obstiuc ion. He quickly shone forth with such splendor as to make it questionable whether the obscurity of his education, as well as the unlearnedness of his society, did not, by having his mind unshackled from scholastic dogmas and critical strictures, rather adrance, than imptde, his real greatness. After preaching in his native neightorhosd and in Pittsylvania county, Virginia, for some years, he was induced by the new church called Nottoway in Amelia county, Va., to move down and
vill be
roast or this d pro2, thus ed for lat the of inre remass, some fusion, jottom ies are e also ay be if not
same
k: I
t gen-
of one ptash; l, with a reduriate powrooal; il ; or, hd half Guxes. d with ucible ${ }_{2}$ must it in a equire 1 by a

Sketches of Pioneer Baptist Preachers in North Oarolina.
by John w. MOore, state historian.
Memoir VII—Rev. Jeremiah Walker.

CHAPTER THO

As the Rev. Jeremiah Walker and other Baptist evangelists of that period traversed Virginia, they found an Episcopal rector and chapel for worship in every parish. The laws and individual inclination had conjoined in bringing over an entirely different class of people to the old Dominion from those who settled the other colonies. No persecuted dissenter was so ignorant as 10 venture from England or Scotland for exile on James river. It was but " jumping out of the frying pan into the fire." The colony planted at Jamestown in 1607 was the pet of King James I. and all his unlucky dynasty. The settlers who were induced to go there were all of the high church type. They hated Catholics and dissenters with a hatred that seems strangely unaccountable in our generation; but this was counted as Gou's service in that wicked and adulterous period that preceded the English revolution of 1688. Many families of wealth and consideration transferred themselves and their fortunes to the beautiful land where the doctrines of Laud and Filmer were so much more highly respected than even in merry England. As was natural, the heads of such families became the leaders and lawmakers of the new land. They carried all their prejudices and want of charity into the General Assembly at Williamsburg and enacted such codes of laws as required the restraining powers in London to temper their harshness and cruelty. When King William III. and his gentle partuer of the throne had procured from the Convention Parliament the enactment of the famous statute, known and reverenced ever since as the Toleration Act, this law, the noblest monument of one of the greatest kings of modern times, was $\%$ tended for the protection of people aga religious persecution in all parts of the butish dominions; but it found slow and meager respect in Virginia. Men like Mr. Walker thought themselves comparatively safe from the priestly tyranny of old until they ventured into the bat-tle-field where the Baptists, backed by Pat-

Edinburgh Medicad and surigeal oburnal, v. 166.
ater specific ned separate, usions of cold till the pres. be expected wder, which mitted to ex-
w ounces of e solution. ted with sulgolden yellow a few drops
f sulphuret of page 263.) s are decomhere addition stock assures bt to afford a bear a close ed antimony, ; the sulphur ic presents a of discrimicts of arsenic sulphuretied nly as collatlicacy: sixty ilphuret (hynost instantly white oxide
op of a weak trops of a sosenic will be la portion of potash, and a similar apbe presént. eristic. It is

CHAP. II.
V.-Acetous

If vinegar contaminated condensation, The former pure ammoni ammonia, or (See the prece

It is not unt to add sulphur by solutions ol terated, throw

VI-
Genuine bo weight of boi should emit a hexangular sc specific gravit

This acid of a portion be di added. A pre entirely re-dis little pure acet phuric acid is is adulterated cipitate insolut

Acid of amt and its combin with muriate of

Sulphuric aci by carbonate of and muriate of a acid; and by a smell of ammoni

Pure acid of a soluble in twenty volatilized, wher or other residue.
rick Henry, Thomas Jeffersoñ ãnd James Madison were struggling for liberty and gospel privileges. That the eloquent young divine had the heart and faith to take his part in such a conflict, adds another to his many claims upon our regard and admiration.
North Carolina Baptist evangelists had been for several years unceasingly active in their incursions into Virginia. As Rev. Dr. Whitsitt remarked in his Wake Forest sermon of 1889, the Old Dominion was chiefly won over to Baptist principles by these missionaries from the Old North State. Thus another element of offense entered into the quarrel which the Churchmen got up with the young preacher from Bute county. He was not only one of the despised Baptists, but an emissary of the same school that had been making such fearful inroads upon Episcopal pastures under the preaching of David Marshall, Samuel Harriss and others. It was a matter of especial offense that these men as a rule were like Mr. Walker from North Carolina. While the British toleration act promised and did secure inmunity from the imprisonments and scourgings of older times simply on an allegation of a want of conformity to the State forms of religion, still in the recesses of the enraged Churchmen's hearts there was yet a hope left of vengeance on their religious disturbers. Some soulless and unprincipled lawyer suggested a trick and perversion of the laws by which the most harmless and holy men should be subjected to the pains and penalties intended only for the restraint of the lawless and violent disturbers of the public peace. It was so arranged that Episcopal roughs should be on hand to disturb and break up by open violence any Baptist meeting they could hear of ; and then these same men of Belial should go before some compliant magistrate and swear out a peace warrant against the Baptist preachers as disturbers of public tranquility. These vil-
lians, who had beaten or tralf drowned the unoffending man of God, would be used as witnesses to prove that his persistence in preaching the gospel was the whole cause of all the trouble.
It was thus that Walker, after one of his most powerful wisourses, found himself hustled and insulted by the minions of the Establishment, and, amid the tears of his people, was led off as a prisoner to answer 1 is for his offense against the peace and dignity of his Majesty's Colony of Virginia. To the warrant alleging his guilt as a disturber of
zegar.
being for its olved. ion of retted ogen.
regar, vered adul-
es its fire, small
acid thers
the pablic tranquility, he pleaded. "not guilty." When the wretched Dogberry of

IX a magistrate had heard the testimony of his accomplices in this mockery of justice, but
This ac slight attention was paid to the best citizens brilliant w of the country as they swore that Mr. Walker's conduct had been entirely peaceful and ble in a la residue w
X.-Su blameless. Of course, his conviction and punishment were foregone conclusions from the beginning; but when he was called upon to pay a fine and costs, and further to give

The sal muriate d dissolve e any thing rity. Sor tected, th tain the r diluted ni solved. this will another p salts; an tect calca

The st carbonati. give voice to his belief in matters of religion. Mr. Walker's patince and meekness

This n ration wi of carbor remain th tate shou muriatic precipita dancy of ing dilut cipitate, means of

Thissc pint may
XII.-

Carbor sulphate as a prisoner of the Lord, and his glowing sermons preached through the jail windows, made him more than ever an idol of the people. That generous sympathy for the wronged and love of fair play, which marks the Anglo Saxon race in every part of the globe, made him friends in the most unexpected quarters. So far from this persecution staying or stopping the young enthusiast in his work, it but fired his soul into fresh ardor. When the jail doors were opened and he was for shame begged to depart, the people thought him more like one inspired than ever before, as the revelled in the fiood tide of resistless argument or melted all hearts with his pathos and tears.

With that noble band of Baptist coadjutors, who through so much labor and tribulation worked out their deliverance from the least dread of future persecution, Mr. Walker basted on until the glorious end at last came. The fight was long and sore, but with liberty achiered, all the sufferings of the past were counted as dust in the balance. A great people, long misled and mis taken as to human rights, woke up from
cHAP. in.
L.
pest has a It is soluleaves no
$s, P . L$
phate and It should vater; and s an impuhus be deTo ascerpure and ain undisif barytes; itate. To er muriatic ch will de-
btassa suber.

P. L.

 s, by satuh speaking: ash should a precipie in dilute cid : if theA redunce, on addwhite preplution, by
xact wine-
P. L. uriate and to a little

CHAP. II.
of the carbont rytes, to deted ascertain the will be shown acid to a stron cultly soluble
XIII.-Soluti

This shoulc on the additio adding alcoho
XIV._Car

This salt s remain, when lime may be be present if of a powder. Sulphuric and adding to the already often
XV.-Solutio

The volatil sible by wate which it is at contain nothir perfectly fre water in the salts may be with pure nit riatic acids. ing the soluti is not precipi minin the st ty, which, at to 1000 .

This may with the disti
vol. If. improper feelings and desires as to seriously
their dream of oppression and wrong to become the light and hope of the human race. Had they no other title to renown than the production of Thomas Jefferson, that single fact would be glory \in nough for unfading immortality. It was through him and his noless illustrious coadjator, James Madison, that religious liberty was made the law of all the republic. The light kindled first by Roger Williams in Rhode Island having, after so many years, flamed up in the great Virginia beacon, was thus spread over the American nation and is yet on its way round the world. It was to take many years before its final triumph in such places as Massachusetts, but even there the mild and gentle teachings of our Saviour were at length accepted in all their mighty scope of mercy and forbearance, and the difference of men in religious opinion happily ceased to be treated as a crime against worldly and often ungodly magistrates. Even in free and liberal North Carolina, the last vestige of this old, unchristian habit of visiting pains and penalties on people considered unorthodox, was not purged from our constitution until the year of our Lord 1835, and even then such wise, just and capable men as Nathaniel Macon were heard advocating a continuance of a policy which, if enforced, would have unseated William Gaston from the Convention of which he was the greatest pride and ornament.

With the full establishment of American independence and the coming on of the peaceful days after so many years of blood and confusion, the times were still illustrated by the eloquence and activity of the Rev. Jeremiah Walker. The sun of his fame and usefulness was yet undimmed. The olden zeal and fervor in his work of salvation knew no abatement to all human appearances; but like David and many others who have truly served God in this lower world, Mr: Walker was yet to prove the frailty of the flesh even in our best estate. The wisdom and justice of the Saviour's declaration, "Let him that thinketh he standeth take heed to his ways lest he fall," were never more clearly demonstrated than in Mr. Walker's sad and unfortunate ending of his stay in Virginia. Like many another popular preacher, he was the object of almost adoration to many young and lovely women who had professed religion under his ministrations. These, under the cloak of religious attachment, too often burned with less holy sentiments toward the great preacher ther so much idolized. In an evil hour for his fame and usefulness, he so far yielded to
of ba. ver, to potash tarous 2 diff-
monia

rvesce

1 m on
L.
thing or of sely to 3 form umps. red by etests
monia, ondenunder should juld be d with. fother olution ad mu7 mixhy salt deter-graviaboutss
gency of it The fraud it; for, if proved. not ensui gravity of

XVII.-s

This sa both of w : 222. No former of siate of p of barytes ver, or m of potash phate of s is little ri

XVIII.

The pl as that of pretty sed XIX.- λ

Nitrate muriate chemical cover mt ed as lo ed and di note abor

Sulpho riate of b

Comm bases, cl in the br
posed from the ministry and stript of ail the olden respect and preference so long enjoyed, the fallen leader had nothing left but the memory of how much he had forfeited by his \sin.

After months of sorrowful repentance, his brethren were induced to give him another trial, and trusting that God had forgiven a soul thus apparently so full of remorse, he was restored to his former privileges as a preacher of the gospel. But nothing could hide the stain on bis escutcheon. He found that his usefulness in the old haunts was a thing not to be recovered. On this account he sought strange faces and cover from the knowledge of men by removing to Georgia. There his fall had its legitimate fruit in the lowering of his former bigh staudard as to creed by surrendering all that was good in Calvinistic teachings and the atoption of extreme Arminianism. The old belief that had been so dear in his days of innocence, that told him of his elertion and adoption through grace, with the firther assurance of his his and every other redecmed soul's final perseverance had passed into doubt and dismay. With the great Dutch teacher, he had come to believe that salvation was not only in reach of all the race, but was dependent solely upon their own wills and works. His great debate with Rev. Silas Mercer before the General Association of Virginia. sbowed that all the astuteness and uratory of the past were yet his; but the soal and cream of his Baptist strength bad been lost in the sense of his double departure from purity and the truth. The case of Mr. Walker, along with others of a similar nature, might well show the people of all creeds cailing on the name of Cbrist, how useless it is to continue men, convicted of disgraceful sins, in their former pastoral relations. Such offences against God and man are sure to bave their legitimate effects on the soul of the offender. Pe ter sinned grievously and was restored to God's favor; but we most remember that was an age of miracles. The forgiveness and absolution of our Lor i could call even the dead back to life, but we have no such resurrections now. The minister who, in his sacred functions deliberately tramples on God's mercy and the trust of his people, is forever unworthy of retulin to his forfeited place as the under shepherd of the Lord. If he is truly repentant, let the church restore him as a layman, but as a pustor and guide, never.
chaf. if of water. ated spireration is vescence e specific

Glauber's
or alkali, ons, page salts; the by prusg nitrate te of silSulphate The sulalts, there
-Vitriolme means renders it
itre or Salt tirely from pt for nice To disast be addtate, washis will de-
ate or mu-
ith earthy e contained lay be pre
cipitated by carbonate of soda, and the precipitated lime and magnesia may be separated from each other by the rules given page 249.
XXI.-Muriate of Ammonia,-Ammonia Murias, P. L.-Sal Ams moniac.
This salt ought to be entirely volatilized, by a low heat, when laid on a heated iron. It sometimes contains sulphate of ammonia, however, which, being also volatile, cannot be thus detected. To ascertain the presence of the latter salt, add the muriate or nitrate of barytes, which will indicate the sulphate by a copious, and insoluble precipitate.
XXII.-Acetate of Potash,-Potassa Acetas, P. L.

Genuine acetate of potash is perfectly soluble in four times its weight of alcohol, and may thus be separated from other salts that are insoluble in alcohol. The tartrate of potash (soluble tartar) is the adulteration most likely to be employed. This may be discovered by adding a solution of tartaric acid, which, if the suspected salt be present, will occasion a copious precipitate. The tartrate is also detected by its forming a precipitate with acetate of lead or muriate of barytes, soluble in acetic or muriatic acid; and sulphates by a precipitate with the same agents, insoluble in acids.

> XXIII.-Neutral Tartrate of Potash, - Potassa Tartras, P. L.Soluble Tartar.

This salt should afford a very copious precipitate on adding tartarous acid. The only salt likely to be mixed with it is sulphate of soda, which may be detected by a precipitate with muriated basytes, insoluble in diluted muriatic acid.

> XXIV.-Acidulous Tartrate of Potash.-Potassa Suthertartras, $$
\text { P. L.-Cream of Tartar. }
$$

The only substance with which this salt is likely to be àdulteratod is sulphate of potash. To determine whether this be present, pour, on about half an ounce of the powdered crystals, two or three ounce-measures of distilled water ; shake the mixture frequently, and let it stand one or two hours. The sulphate of potash, being more soluble than the tartrate, will be taken up; and may be known by the bitter taste of the solution, and by a precipitate, on adding muriate of barytes, which will be insoluble in musiatic acid.
XXV.-Compound Tartrate of Soda and Potash,-Soda Tartarizata, P. L.-Rochelle or Seignette's Salt.
Sulphate of soda, the only salt with which this may be expected to be adulterated, is discovered by adding to a solution of Rochelle salt the acetate of lead or muriate of barytes.-The former, if the sulphate be present, affords a precipitate insoluble in acetous acid, and the latter one insoluble in muriatic acid.

XXVI-Sulyihate of Magnesia,-Magnesia Sulhhas, P. L.-Ensom Salt.
This salt is very likely to be adulterated with sulphate of soda, or Glauber's salt, which may be made to resemble the magnesian salt in appearance, by stirring it briskly at the moment when it is about to crystallize. The fraud may be discovered very readily if the salt consist entirely of the sulphate of soda, because no precipitation will ensue on adding carbonate of potash. If only a part of the salt be sulphate of soda, detection is not so easy, but may still be accomplished. For, since 100 parts of pure sulphate of magnesia give between 30 and 40 of the dry carbonate, when completely decomposed by carbonatc of potash, if the salt under examination afford a considerably less proportion, its sophistication may be fairly inferred : or, to discover the sulphate of soda, precipitate all the magnesia by pure ammonia, with the aid of heat. Decant the clear liquor from the precipitate, filter it, and, after evaporation to dryness, apply such a heat as will volatilize the sulphate of ammonia, when that of soda will remain fixed.

Muriate of magnesia or of lime may be detected by the salt becoming moist when exposed to the air, and by a precipitation with nitrated silver, after nitrate of barytes has separated all the sulphuric acid and magnesia. Lime is discoverable by oxalic acid.

> XXVII.—Sulthate of Alumine,-Alum.

Perfectly pure alum should contain neither iron nor copper. The former is manifested by adding, to a solution of alum, prussiate of potash, and the latter by an excess of pure ammonia.

> XXVIII.-Borate of Soda,-Soda Boras, P. L-Borax.

Borate of soda, if adulterated at all, will probably be so with alum or fused muriate of soda. To discover these, borax must be dissolved in water, and its excess of alkali be saturated with nitric acid. Nitrate of barytes, added to this saturated solution, will detect the sulphuric salt, and nitiate of silver the muriate of soda.

XLIX-Shirit of Wine, Alcohol, and Ethers.

The only decisive mode of ascertaining the purity of spirit of wine and of æthers, is by determining their specific gravity. Highly rectified alcohol should have the specific gravity of 800 to 1000 . Common spirit of wine 837. Sulphuric æther 739. The sniritus etheris sulfihurici, $P . L$. or sweet spirit of vitriol, about $753,-$ and nitric æther, the spiritus wetheris nitrosus, or sweet spirit of nitre, 908. The æthers ought not to redden the colour of litmus, nor ought those formed from sulphuric acid to give any precipitation with solution of barytes.

L.-Essential or Volatile Oils.

As essential oils constitute only a very small proportion of the vegetables from which they are obtained, and bear generally a very high price, there is a considerable temptation to adulterate them. They are found sophisticated, either with cheaper volatile oils, with fixed oils, or with the spirit of wine. The fixed oils are discovered by distillation with a very gentle heat, which elevates the essential oils, and leaves the fixed ones. These last may, also, be detected by moistening a little writing-paper with the suspected oil, and holding it before the fire. If the oil be entirely essential, no stain will remain on the paper. Alcohol, also, detects the fixed oils, because it only dissolves the essential ones, and the mixture becomes milky. The presence of cheaper essential oils is discovered by the smell. Alcohol, a cheaper liquid than some of the most costly oils, is discovered by adding water, which, if alcohol be present, occasions a milkiness.

CHAPTER III.

TSE OF CEEMICAL RE-AGENTS TO CERTAIN ARTISTS AND MANUFACTURERS.

TO point out all the beneficial applications of chemical substances to the purposes of the arts, would require a distinct and very extensive treatise. In this place I have no farther view than to describe the mode of detecting adulterations in certain articles of commerce; the strength and purity of which are essential to the success of chemical processes.

1.-Mode of detecting the Adulteration of Potashes, Pearlashes, and Barilla.

Few objects of commerce are sophisticated to a greater extent than the ąlkalis, to the great loss and injury of the bleacher, the dyer, the glass-maker, the soap-boiler, and of all other artists who are in the habit of employing these substances. In the first part of this work (see vol: i. page 223) I have already given rules for discovering such adulterations : and to what has been said, I apprehend it is only necessary to add the directions of Mr. Kirwan, intended to effect the same cud, but differing in the mode. They are transcribed from his paper, entitled, "Experiments on the Alkaline Substances used in Bleaching;"-see Transactions of the Irish academy for 1789.*
"To discover whether any quantity of fixed alkali worthy of attention exists in any saline compound, dissolve one ounce of it in boiling water, and into this solution let fall a drop of a solution of sublimate corrosive ; this will be converted into a brick-colour, if an alkali be present, or into a brick-colour mixed with yellow, if the substance tried contains lime.
"But the substances used by bleachers being always imprega nated with an alkali, the above trial is in general superfluous, except for the purpose of detecting lime. The quantity of alkali is therefore what they should chiefly be solicitous to determine, and for this purpose,
" lot, Procure a quantity of alum, suppose one pound, reduce it to powder, wash it with cold water, and then put it into a teapot, pouring on it three or four times its weight of boiling water.
"2diy, Weigh an ounce of the ash or aikaline substance to be tried, powder it, and put it into a Florence flask with one pound of pure water (common water, boiled for a quarter of an hour, and aftel wards fitered through paper, will answer ;) if the substance to be examined be of the nature of barilia or potash, or half a pound of water if it contain but little earthy matter, as pearlash. Let them boil for a quarter of an hour; when cool, let the solution be filtered into another Floreace flask.
" 3dly", This being donc, gradually pour the solution of alum hot into the alkaline solution also heated; a precipitation will immediately appear; shake them well together, and let the efferves-

[^10]cence, if any, cease before more of the aluminous solution be added; continue the addition of the alum until the mixed liquor, when clear, turns syrup of violets or paper tinged blue by radishes, or by litmus, red; then pour the liquor and precipitate on a pa-per-filter, placed in a glass funnel. The precipitated earth will remain on the filter ; pour on this a pound or more of hot water, gradually, until it passes tasteless; take up the filter, and let the earth dry on it until they separate easily. Then put the carth into a cup of Staffordshire ware, place it on hot sand, and dry the earth until it ceases to stick to glass or iron; then pound it, and reduce it to powder in the cup with a glass pestle, and keep it a quarter of an hour in a heat of from 470° to 500°.
" 4thly, The earth being thus dried, throw it into a Florence flask, and weigh it ; then put about one ounce of spirit of salt into another flask, and place this in the same scale as the earth, and counterbalance both in the opposite scale; this being done, pour the spirit of salt gradually into the flask that contains the earth; and, when all effervescence is over (if there be any,) blow into the flask, and observe what weight must be added to the scale containing the flasks to restore the equilibrium; subtract this weight from that of the earth, the remainder is a weight cxactly profortioned to the weight of mere alkali of that particular species which is contained in one ounce of the substance examined; all beside is superfluous matter.
"I have said, that alkalis of the same shecies may thus be directly compared, because alkalis of different species cannot but require the intervention of another proportion; and the reason is, because equal quantities of alkalis of different species precipitate unequal quantities of earth of alum : Thus 100 parts, by weight, of mere vegetable alkali precipitate 78 of earth of alum, but 100 parts of mineral alkali precipitate 170.8 parts of that earth. Therefore the precipitation of 78 parts of earth of alum, by vegetable alkali, denotes as much of this, as the precipitation of 170.8 of that earth by the mineral alkali, denotes of the mineral alkali. Hence the quantities of alkali in all the different species of potashes, pearlashes, weed or wood ashes, may be immediately compared with the above test, as they all contain the vegetable alkali; and the different kinds of kelp or kelps manufactured in different placee, and the different sorts of barilla, may thus be compared, because they all contain the mineral alkali. But kelps and potashes, as they contain different sorts of alkali, can only be compared togetho cr by means of the proportion above indicated."

1I.-Mode of detecting the Adulteration of Manganese.

In the section on drugs, instructions may be found for discover. ing impurities in several chemical preparations, employed by the artist, as cerusse or white lead, red lead, verdegris, \&cc. No rules, however, have been given for examining manganese, which is a substance that varies much in quality, and is often sophisticated; as the bleachers experience, to their no small disappointment and loss.

The principle defect of the manganese arises from the admixture of chalk, which is not always an intentional adulteration, but is sometimes found united with it, as it occurs in the earth. When to this impure manganese mixed with muriate of soda, the sulphuric acid is added, the materials effervesce and swell considerably, and a large proportion passes into the receiver; in consequence of which the bleaching liquor is totally spoiled. This accident has, to my knowledge, frequently happened, and can only be prevented by so slow and cautious an addition of the acid, as is nearly inconsistent with the business of an extensive bleaching work. The presence of carbonate of lime may be discovered in manganese, by pouring, on a portion of this substance, nitric acid diluted with 8 or 10 parts of water. If the manganese be good, no effervescence will ensue, nor will the acid dissolve any thing; but, if carbonate of lime be present, it will be taken up by the acid. To the solution add a sufficient quantity of carbonate of potash to precipitate the lime, wash the sediment with water, and dry it. Its weight will show how much chalk the manganese under examination contained.

Another adulteration of manganese, that may, perhaps, be sometimes practised, is the addition of some ores of iron. This impurity is less easily discovered. But if the iron be in such a state of oxidation as to be soluble in muriatic acid, the following process may discover it. Dissolve a portion, with the assistance of heat, in concentrated muriatic acid, dilute the solution largely with distilled water, and add a solution of crystallized carbonate of patash. The manganese will remain suspended, by the excess of carbonic acid, on mixing the two solutions, but the iron will be precipitated in the state of a coloured oxide.

From an observation of Klaproth (Essays, vol.i. page 572,) it appears that oxides of iron and manganese are separable by nitrous acid with the addition of sugar, which takes up the manganese only.

The chemical substances, or re-agents, required for separating the constituent parts of the soil, are muriatic acid (spirit of salt,) sulphuric acid, pure volatile alkali dissolved in water, solution of prussiate of potash, soap lye, solution of carbonate of ammonia, of muriate of ammonia, solution of neutral carbonate of potash, and nitrate of ammonia. An account of the nature of these bodies, and their effects, may be found in the chemical works alrcady noticed; and the re-agents are sold, together with the instruments mentioned above, by Mr. Knight, Foster-lane, Cheapside, arranged in an appropriate chest.

IV.-Mode of collecting Soils for Analysis.

In cases when the general nature of the soil of a field is to be ascertained, specimens of it should be taken from different places, two or three inches below the surface, and examined as to the similarity of their properties. It sometimes happens, that upon plains the whole of the upper stratum of the land is of the same kind, and in this case, one analysis will be sufficient; but in valleys, and near the beds of rivers, there are very great differences, and it now and then occurs that one part of a field is calcareous, and another part siliceous; and in this case, and in analogous cases, the portions different from each other should be separately submitted to experiment.

Soils when collected, if they cannot be immediately examined, should be preserved in phials quite filled with them, and closed with ground glass stoppers.

The quantity of soil, most convenient for a perfect analysis, is from two to four hundred grains. It should be collected in dry weather, and exposed to the atmosphere till it becomes dry to the touch.

The specific gravity of a soil, or the relation of its weight to that of water, may be ascertained by introducing into a phial, which will contain a known quantity of water, equal volumes of water and of soil; and this may be easily done by pouring in water till it is half full, and then adding the soil till the fluid rises to the mouth ; the difference between the weight of the soil and that of the water will give the result. Thus if the bottle contains four hundred grains of water, and gains two hundredgrains when half filled with water and half with soil, the specific gravity of the soil will be 2, that is, it will be twice as heavy as water, and if it gained one hundred and sixty-five grains, its specific gravity would be 1825 , water being 1000 .

It is of importance, that the specific gravity of a soil should be known, as it affords an indication of the quantity of animal and vegetable matter it contains; these substances being always most abundant in the lighter soils.

The other physical properties of soils should likewise be examined before the analysis is made, as they denote, 10 a certain extent, their composition, and serve as guides in directing the experiments. Thus siliceous soils are generally rough to the touch, and scratch glass when rubbed upon it; aluminous soils adhere strongly to the tongue, and emit a strong earthy smell when breathed on ; and calcareous soils arc soft, and much less adhesive than aluminous soils.

V.-Mode of ascertaining the Quantity of Water of Absorftion in Soils.

Soils, though as dry as they can be made by continued exposure to air, in all cases still contain a considerable quantity of water, which adheres with great obstinacy to the earths and animal and vegetable matter, and can only be driven off from them by a considerable degree of heat. The first process of analysis is, to free the given weight of soil from as much of this water as possible, without in other respects affecting its composition; and this may be done by heating it for ten or twelve minutes over an Argand's lamp, in a bason of porcelain, to a temperature equal to 300** Fahrenheit; and in case a thermometer is not used, the proper degree may be easily ascertained, by keeping a piece of wood in contact with the bottom of the dish; as long as the colour of the wood remains unaltered, the heat is not too high; but when the wood begins to be charred, the process must be stopped. A small quantity of water will perhaps remain in the soil even after this operation, but it always affords useful comparative results; and if a higher temperature were employed, the vegetable or animal matter would undergo decomposition, and in consequence the experiment be wholly unsatisfactory.

The loss of weight in the process should be carefully noted; and when in 400 grains of soil it reaches as high as 50 , the soil may be considered as in the greatest degrec absorbent, and retentive of water, and will generally be found to contain a large proportion of aluminous earth. When the loss is only from 20 to 10 ,

* In several experiments, in which this process has been carried on by distillation, I have found the water that came over pure, and no sensible quantity of other volatile matter was produced.
the land may be considered as ouly slightly absorbent and retentive, and the siliccous earth as most abundant.
VI.-Of the Separation of Stones, Gravel, and Vegetable Fibres, from Soils.
None of the loose stones, gravel, or large vegetable fibres should be divided from the pure soil till after the water is drawn off; for these bodies are themselves often highly absorbent and retentive, and in consequence influence the fertility of the land. The next process, however, after that of heating, should be their separation, which may be easily accomplished by the sieve, after the soil has been gently bruised in a mortar. The weights of the vegetable fibres or wood, and of the gravel and stones, should be separately noted down, and the nature of the last ascertained; if calcareous, they will effervesce with acids; if siliceous, they will be sufficiently hard to scratch glass; and if of the common aluminous class of stones, they will be soft, easily scratched with a knife, and incapa. ble of effervescing with acids.
XII.-Seharation of the Sand and Clay, or Loam; from each other.
The great number of soils, besides gravel and stones, contain larger or smaller proportions of sand of different degrees of fineness; and it is a necessary operation, the next in the process of analysis, to detach them from the parts in a state of more minute division, such as clay, loam, marl, and vegetable and animal matter. This may be effected in a way sufficiently accurate, by agitation of the soil in water. In this case, the course sand will generally separate in a minute, and the finer in two or three minutes, whilst the minutely divided earthy, animal, or vegetable matter, will remain in a state of mechanical suspension for a much longer time ; so that, by pouring the water from the bottom of the vessel, after one, two, or three minutes, the sand will be principally separated from the other substances, which, with the water containing them, must be poured into a filter, and after the water has passed through, collected, dried, and weighed. The sand must likewise be weighed, and their respective quantities noted down. The water of lixiviation must be preserved, as it will be found to contain the saline matter, and the soluble animal or vegetable matters, if any exist in the soil.

> VIII.-Examination of the Sand.

By the process of washing and filtration, the soil is separated into two portions, the most important of which is generally the finely divided matter. A minute analysis of the sand is seldom or never necessary, and its nature may be detected in the same manner as that of the stones or gravel. It is always either siliceous sand, or calcareous sand, or a mixture of both. If it consist wholly of carbonate of lime, it will be rapidly soluble in muriatic acid, with effervescence ; but if it consist partly of this substance, and partly of siliceous matter, the respective qualities may be ascertained by weighing the residuum after the action of the acid, which must be applied till the mixture has acquired a sour taste, and has ceased to effervesce. This residuum is the siliceous part : it must be washed, dried, and heated strongly in a crucible; the difference between the weight of it and the weight of the whole, indicates the proportion of calcareous sand.
IX.-Examination of the finely divided Matter of Soils, and Mode of detecting mild Lime and Magnesia.
The finely divided matter of the soil is usually very compound in its nature ; it sometimes contains all the four primitive earths of soils, as well as animal and vegetable matter; and to ascertain the proportions of these with tolerable accuracy, is the most difficult part of the subject.

The first process to be performed, in this part of the analysis, is the exposure of the fine matter of the soil to the action of the mariatic acid. This substance should be poured upon the earthy matter in an evaporating bason, in a quantity equal to twice the is eight of the earthy matier, but diluted with double its volume of waicr. The mixture should be often stirred, and suffered to remain for an hour, or an hour and a half, before it is examined.
If any carbonate of lime, or of magnesia, exist in the soil, they will have been dissolved in this time by the acid, which sometimes takes up likewise a little oxide of iron, but very seldom any alumine.

The fluid should be passed through a filter; the solid matter collected, washed with rain water, dried at a moderate heat, and weighed. Its loss will denote the quantity of solid matter taken up. The washings must be added to the solution, which, if not sour to the taste, must be made so by the addition of fresh acid, when a little solution of common prussiate of potash must be mixed with the whole. If a bine precipitate occurs, it denotes the
presence of oxide of iron, and the solution of the prussiate must be dropped in till no farther effect is produced.' To ascertain its quantity, it must be collected in the same manner as other solid pirecipitates, and heated red; the result is oxide of iron.

Into the fluid, freed from oxide of iron, a solution of neutralized zarbonate of potash must be poured till all effervescence ceases in it, and till its taste and smell indicate a considerable excess of alkaline salt.

The precipitate that falls down is carbonate of lime ; it must oe collected on the filter, and dried at a heat below that of redness.

The remaining fluid must be boiled for a quarter of an hour, when the magnesia, if any exist, will be precipitated from it, comoined with carbonic acid, and its quantity is to be ascertained in the same manner as that of the carbonate of lime.

If any minute proportion of alumine should, from peculiar circumstances, be dissolved by the acid, it will be found in the presipitate with tlie carbonate of lime, and it may be separated from it by boiling for a few minutes with soap lye, sufficient to cover the solid matter.-This substance dissolves alumine, without acting upon carbonate of lime.

Should the finely divided soil be sufficiently calcareous to effervesce very strongly with acids, a very simple method may be adopted for ascertaining the quantity of carbonate of lime, and one sufficiently accurate in all common cases.

Carbonate of lime, in all its states, contains a determinate proproportion of carbonic acid. i.e. about 45 her cent.; so that when the quantity of this elastic fluid, given out by any soil during the solution of its calcareous matter in an acid, is known, either in weight or measure, the quantity of carbonate of lime may be easily discovered.

When the process by diminution of weight is employed, two parts of the acid, and one part of the matter of the soil must be weighed in two separate bottles, and very slowly mixed together :ill the effcrvescence ceases; the difference between their weight before and after the experiment, denotes the quantity of carbonic acid lost; for ciery four grains andea half of which, ten grains of carbonate of lime must be estimated.

The best method of collecting the carbonic acid, so as to discover its volume, is by the pneumatic apparatus, the construction and application of which is lescribed at the end of this paper.
vol. ti.

The estimation is, for every ounce measure of carbohic acid, two grains of carbonate of lime.

> X—Mode of ascertaining the Quantity of insoluble fnely divided Animal and Vegetable Matter.

After the fine matter of the soil has been acted upon by muriatic acid, the next process is to ascertain the quantity of finely divided insoluble animal and vegetable matter that it contains.

This may be done with sufficient precision, by heating it to strong ignition in a crucible over a conmon fire till no blackness remains in the mass. It should be often stirred with a metallic wire, so as to expose new surfaces continually to the air; the loss of weight that it undergoes denotes the quantity of the substance that it contains destructible by fire and air.

It is not possible to ascertain whether this substance is wholly animal or vegetable matter, or a mixture of both. When the smell emitted during the incineration is similar to that of burnt feathers, it is a certain indication of some animal matter; and a copious blue flame at the time, of ignition, almost always denotes a considerable proportion of vegetable matter. In cases when the experiment is needed to be very quickly performed, the destruction of the decomposible substances may be assisted by the agency of nitrate of ammonia, which, at the time of ignition, may be thrown gradually upon the heated mass, in the quantity of twenty grains for every hundred of residual soil. It affords the principle necessary to the combustion of the animal and vegetable matter, which it causes to be converted into elastic fluids; and is itself at the same time decomposed and losi.
XI.-Mode of sefarating Aluminous and Siliceous Matter, and Oxade of Iron.
The substances remaining after the decomposition of the vegetable and animal matter, are generally minute particles of earthy matter, containing usually alumine and silex with combined oxide of iron.

To separate these from cach other, the solid matter should be boiid dor two or three hours with sulphuric acid, diluted with four imes its weight of water; the quanity of the acid should be regulated by the quatity of solid resicium to be acted on, allowing for every hundred grains two dracums, or one hundred and twenty grains of acid.

The substance, remaining after the action of the acid, may be

From the great difference of the causes that influence the productiveness of lands, it is obvious, that, in the present state of science, no certain system can be devised for their improvement, independent of experiment; but there are few cases in which the labour of analytical trials will not be amply repaid by the certainty with which they denote the best methods of amelioration; and this will particularly happen, when the defect of composition is found in the proportions of the primitive carths.

In supplying animal or vegetabie manure, a temporary food only is provided for plants, which is in all cases exhausted by means of a certain number of crops; but when a soil is rendered of the best possible constitution and texture, with regard to its earthy parts, its fertility may be considered as permanently established. It becomes capable of attracting a very large portion of vegetable nourishment from the atmosphere, and of producing its crops with comparatively little labour and expense.

Descrintion of the Ahfiaratus for the Analysis of Soils.
Pl. iv. fig. $44 ; a, b, c, d, c, f$. The different parts of the appas ratus required for measuring the quantity of elastic fluid given out during the action of an acid on calcareous soils. a Represents the bottle for containing the soil; b, the bottle containing the acid, furnished with a stop-cock; c, the tube connected with the flaccid bladder ; d, f, the graduated measure ; e, the bottle for containing the bladder. When this instrument is used, a given quantity of soil is introduced into $a ; b$, is filled with muriatic acid, diluted with an equal quantity of water; and the stop-cock being closed, is comnected with the upper orifice of a, which is ground to receive it. The tube c is introduced into the lower orifice of a, and the bladder connected with it placed in its flaccid state in e, which is filled with water. The graduated measure is placed under the tube of e. When the stop-cock of b is turned, the acid flows into a, and acts upon the seil ; the elastic fluid generated passes through c into the bladder, and displaces a quantity fof water in e equal to it in bulk, and this water flows through the tube into the graduated measurc ; the water in which gives, by its volume, the indication of the proportion of carbonic acid disengaged from the scil; for every ounce measure of which two grains fof carbonate of lime niay be estimated.

CHAPTER V.

MISCELLANEOUS USES OF CHEMICAL RE-AGENTS.

I.-Removal of Ink Stains.

THE stains of ink on cloth, paper, or wood, may be removed by almost all acids; but those acids are to be preferred which are least likely to injure the texture of the stained substance. The muriatic acid, diluted with five or six times its weight of water, may be applied to the spot, and, after a minute or two, may be washed off, repeating its application as often as may be found necessary. But the vegetable acids are attended with less risk, and are equally effectual. A solution of the oxalic, citric, or tartaric acids, in water, may be applied to the most delicate fabrics, without any danger of injuring them; and the same solutions discharge from paper, written, but not printed, ink. Hence they may be employed in cleaning books, which have been defaced by writing. on the margin, without impairing the text.
II.-Iron Stains.

These may be occasioned either by ink stains, which, on the application of soap, are changed into iron stains, or by the dircct contact. of rusted iron.-They may be removed by diluted muriatic acid, or by one of the vegetable acids already mentioned. When suffered to remain long on cloth, they become extremely difficult to take out, because the iron, by repeated moistening with water and exposure to the air, acquires such an adition of oxygen as renders it insoluble in acids. Even these spots, however, may be discharged, by applying first a solution of recently prepared muriate of tin, which must be well washed from the cloth, and afterwards a liquid acid. The muriate of tin, in this case, extracts part of the oxygen from the iron, and renders it soluble in dilute acids.

MI.-Fruit and Wine Stains.

These are best removed by a watery solution ofthe oxygenized muriatic acid (see chap. xiv. sect. 3 ,) or by that of oxygenized muriate of potash or lime, to which a little sulphuric acid has been added. The stained spot may be steeped in one of these sulutions till it is discharged; but the solution can only be applied with safety to white goods, because the uncombined oxygenized acid discharges all printed and dyed cotours. A convenient mode of
applying the oxygenized acid, easily practicable by persons who have not the apparatus for saturating water with the gas, is as follows : Put about a table-spoonful of muriatic acid (spirit of salt) thto a tea-cup, and add to it about a tea-spoonful of powdered manganese. Then set this cup in a larger one filled with hot water. Moisten the stained spot with water, and expose it to the fumes that arise from the tea-cup. If the exposure be continued a sufficient length of time, the stain will disappear.
Stains on silk may be removed by a watery solution of sulphurous acid, or by the fumes of burning sulphur.

IV.-Sthots of Grease

May be removed by a diluted solution of pure potash ; but this must be cautiously applied, to prevent injury to the cloth. -Stains of wwite zvax, which sometimes fall upon the clothes from wax candles, are removeable by spirit of turpentine or sulphuric ether. -The marks of wwite naint may also be discharged by the lastmentioned agents.

APPENDIX 1.

OF THE IRECENT DISCOVERIES IN CHEMISCRY.

Since this work was committed to the press, several new facts have been discovered, the importance of which requires that they should be noticed, though published too late to be inserted in their proper place. Of these the principal part are contained in Mr. Davy's last communication to the Royal Society, a copy of of which he has been so obliging as to transmit to me, previously to its publication in the Philosophical Transactions.* These discoveries lead to some changes in the views, which have been given in the first volume, of the nature of certain chemical agents. In researches, indecd, so refined and complicated, and inrolving so many sources of error, it is to be expected that frequent changes will be required, both in the enunciation of facts, and in the conclusions deduced from them.
I.-On Ammonia- Its Formation from Charcoal and Pearlasi-

Presence of Oxygen in it—Amalsam of Mercury and Ammonium.
From the researches of Mr. Davy, of which an outline has been given at page 194 yol. i. it appeared to follow that, by the action of potassium on ammonia, the nitrogen which enters into the constitution of that alkali, suffers a decomposition, since a less quanrity of nitrogen gas is ubtained by the agericy of this metal than by electrical analysis. At the same time the increased production of hydrogen gas pointed out lydirogen as a probable element of nitrogen. MM. Gay Lussac and Thenard, however, have asserted that the fusible substance, generated by heating potassium in anmonia, may be made to give out the whole of the ammonia which has been absorbed by the process, two fifths as ammonia, one fifth as hydrogen and nitrogen; and the remaining two fifths, by the addition of water, in the form of volatile alkali. They agree with Mr. Davy as to the evoluten of hydrogen ; but maintain that as all the ammonia is recovered, the hydrogen gas must be furnished by the decomposition of potassium.

These discordant results have Iod Mr. Dayy to repeat his former experiments, with the observance of every possible precan-
however, it is partially decomposed by the air in the water, so that it is not easy to say whether the power is inherent in it, or depends on the diffusion of a small quantity of muriatic acid through it. In other respects, it resembles a weak acid, combining with watcr and the alkalis. It precipitates most metallic solutions. It is instantly decomposed by oxy-muriatic acid, depositing a film at first metallic, but which is soon converted into muriate of tellurium.

The phenomena produced by substituting arsenic for tellurium in similar experiments were considerably different. Arsenic, made the negative surface in water, became dark coloured and threw down a brown powder, but it likewise gave off a considerable quantity of hydrogen gas. Negatively clcctrified in contact with sulid potash, an alloy of potassium and arsenic was formed of a dark prey colour and perfectly metallic, which gave off arsenuretted hydrogen by the action of water. Potassium and arsenic, simply heated together, combined with such violence as to exhibit an accual inflammation, and yielded a similar alloy.

By heating these alloys of tellurium and arsenic with potassium in amınoniacal gas, an elastic fluid was generated, which consistcd of four sixths nitrogen, instead of being pure hydrogen, as in the action of potassium alone. If it be said, then, that the metal and not the ammonia is decomposed in processes of this kind, it must be considered (Mr. Davy argues) in some cases as a compound of nitrogen, and in others as a compound of hydrogen, which are contradictory assumptions.
V.-Nature of Sulfhur, Phosphorus, and their Combinations with Hydrogen.
From the experiments of Mr. Davy, of which an abstract is given in the first volume, it appeared extremely probable that both sulphur and phosphorus contain hydrogen. The intense ignition, which these bodies cxhibit during their combination with potassium, led him also to suspect that they might contain oxygen; but this inference has since been rendcred questionable by the fact, that similar phenomena attend the action of potassium on tellurium and arsenic. Neither is the diminution of the power of potassium to decompose water, after its union with sulphur ard phusphorus, so clearly establishod, as to furnish proof of the presence of oxygen in these bodies. The idea, however, is still supporticd ty several analogics, and cspccially by their property of bense won-conNuctors of electricity.

Sulphuretted hydrogen gas, Mr. Davy states to weigh 35 grains for 100 cubical inches; and as the gas contains a volume of hydrogen gas precisely equal to its own, it will consist of 2.27 hy drogen, and 32.73 sulphur ; and honce 100 parts by weight will contain

> 93.51 sulphur
> 6.49 hydrogen

100

When sulphuretted hydrogen is decomposed by common electricity, there is a slight diminution of volume, and the precipitated sulphur appears to contain a little hydrogen; but when Voltaic sparks are transmitted through it, the sulphur is precipitated in its common form, and there is no change of volume.

Arsenuretted and phosphuretted hydrogen gases are also decomposed by electricity without changing their bulk. But neither arsenic nor phosphorus are separated in their ordinary states. The phosphorus has a dark colour, and the arsenic is a brown powder ; and both substances probably contain hydrogen. If potassium be brought into contact with these grases in smaller quantity than is.necessary to decompose the whole, there is always an expansion of volume. Both gases, therefore, must contain more than their own volume of hylfogen, probably half as much more or twice as much more. From experiments on the weight of these gases, Mr. Davy finds that 100 cubic inches of arsenuretted hydrogen weigh about 15 grains, and 100 cubic inches of phosphuretted hydrogen about 10 grains. Mr. Datton, however, fiom recent experiments, is disposed to consider phosphuretted hydrogen as much heavier ; and to rate the 100 cubical inches at 26 grains.
VI.—Of Mr. Dallon's Nezv System of Chemical Elements.

I have already (vol. i. page 60) stated very briefly the principle on which Mr. Dalton has foumded his new system of chemical elements, or what may be calied the atomic system. ' Into the details of this theory, or the analogies on which it rests, I have purposely, however, foreborn to cnter; because nothing more than a brief outline has hitherto been laid before the public by the author himself. In the sccond part of his "New System of Chemical Plilosophy," which is ncarly ready for pulitation, not only the faciss many of which have becn obtained by his own claborate restarclses, but the trail of reasoniar to which they bate led, will be fully developeg. In the mean time I suljuin, from the first part of

Ir. Dalton's work, the table of the relative weights of severak odies, with some corrections, resulting from his late experience, which he has been so obligingr as to communicate to me. To exlain the method in which these numbers have been deduced, it nay be proper to add the following remarks.

Let us suppose that any two elementary bodies a and b form a inary compound, and that they have been proved experimentally 0 unite in the proportion by weight of 5 of the former to 4 of the atter; then, since according to the hypothesis, they unite partile to particle, these numbers will express the relative weights of heir atoms. But besides combining atom to atom singly, one aom of a may also combine with 2 of b or with 3,4 , \&c. Or, rerersely, 1 of b may unite with 2 of a or with $3,4, \& c$. When such 1 series of compounds exists, the relative proportion of their ele. nents ought necessarily, on analysis, to be proved to be 5 of a to 4 of b; or 5 to $(4+4=) 8$; or 5 to $(4+4+4=) 12$; \&c. ; or, contrariwise, 4 of b to 5 of a, or 4 to $(5+5=) 10$; or 4 to $(5+5$ $+5=$) 15. Between these, there ought to be no intermediate compounds; and the existence of any such would be fatal to the hypothesis.

To verify these numbers, it may be proper to examine the comibinations of a and b with some third substance, for example with c. Let us suppose that in the binary compound of a and c, analysis discovers 5 parts of the former and 3 of the latter. Then, if c and b are also capable of forming a binary compound, their relative proportions by weight in this compound ought to be 4 of b to 3 of c, since these numbers denote the relative weight of their atoms. Now this is precisely the mehod, by which Mr. Dalion has deduced and verified the relative weights of oxygen, hydrcgen, and nitrogen; the two first from the known composition of water ; and the two last from the proportion of the elements of ammonia. Extending the comparison to a number of other bodies, he has obtained a scale of the relative weights of their atoms,

The hypothesis, therefore, although its leading principle be a gratuitous assumption, must stand or fall by the results of analysis. The instances in which it agrees with these results, are already very numerous; and none have hitherto been shown to be directly contradictory to it. If it should continue to derive support from the progress of discovery, its importance will be scarcely less felt in assisting and directing future investigations, than in de. termining the accuracy of our present knowledge.

Relative weights of the ultimate atoms of several bodies.

Hyarogen	-	1	Potassium	-	43
Nitrogen	-	5	Strontites	-	46
Carbon	-	5	Barytes	-	68
Oxygen	-	7	Iron	-	50
Phosphorus	-	9	Zinc	-	56
Sulphur	-	13	Copper	-	56
Magnesia	-	17	Lead	-	95
Lime	-	24	Silver	-	100
Soda	-	28	Platina	-	100
Sodium	-	29	Gold	-	140
Potash	-	42	Mercury	-	167

BINARY COMPOUNDS.
An atom of water or steam, composed of one oxygen and one hydrogen, retained in pliysical contact by a strong affinity ; and supposed to be surrounded by a common atmosphere of heat

An atom of ammonia, composed of one atom of nitrogen and one atom of hydrosen

An atom of nitrous gas composed of one atom of nitrogen and one of oxysen
An atom of olefiant gas composed of one atom of carbon and one of lydrogen
An atom of carbonic oxide composed of one atom of carton and ohe of exygen12

An atom of sulpheretted hydrogen composed of one atom of sulphur and one of hydrogen

TERNARY COMPOUNDS.
An atom of nitrous oxide two nitrogen and one oxygen

An atom of Nitric acid one nitrogen and two oxygen19

An atom of carbonic acid one calbon and two oxygen

An atom of carburetted hydrogen one carlion and two hydrogen

qUATERNARY COMPOUNDS.

Oxy-nitric acid. One alom of nitogen + three oxygen

Sulphuric acid. One sulphur + three oxygen - 34
Alcohol. Three carbon + one hydrogen . 16

Nitrous acid. One nitric acid + one nitrous gas - 31
Acefic acid. Two carbon + two water - - 26
Nifrate of ammonia. One nitric acid + one ammonia

+ one water - - - - - - - 33

Sugar. One alcohol + one carbonic acid - - 35

VII.-Proportion of the Elements of some Combinations.

The eprecise determination of the composition of neutral and ther salts is of the greatest importance, not only for the facts hemselves, but still more for their application in almost every pecies of analysis, and their influence on the general doctriues of hemistry. On this subject Berthier has lately contributed some lew experiments;* and Berard has published avaluable memoir. The muriates of barytes and silver have been examined by the ormer, and found to be composed as follows.
Muriate of barytes in crystals consists of

Base	-	-	-	64	
Acid	-	-	-	-	21
Water	-	-	-	15	
100					

Deprived of water, the same salt is composed of

Base	-	-	-	75.3
Acid	-	-	-	24.7
		-	100	

The muriate of silver consists of

Acid	-	-	-
18.3			
Silver	-	-	-
Oxygen	-	-	-
			67

This determination agrees very nearly with Gay Lussac's latest experiment, quoted by Berard, viz.

Acid	-	-	18.03
Base	-	-	81.97

M. Berard's researches \dagger were directed chiefly to the analysis of che alkaline carbonates and sub-carbonates; but several other salts were examined in the course of the inquiry.

The saturated carbonates of potash and soda were formed by mingling the solutions of their sub-carbonates with one of sub-

[^11]VOL. H. 42
carbonate of ammonia. The sub-carbonates of the same alkalis were formed by fusing their carboinates, a process which always affords them in an uniform statc as to the proportion of their elements. The sub-carbonate of soda, it has been long known, may be obtained in crystals; and Berard confirms the fact that subcarbonate of potash is also capable of assuming a regular form. To obtain it in this state, supertartrate of potash is to be calcined, lixiviated, and the solution evaporated to the degree necessary for forming crystals, which are to be dried by blotting-paper. When these crystais are exposed to a sufficicnt degree of heat, they are entirely deprived of water; but retain their carbonic acid.

The following are the proportions of the ingredients in 100 grains of the crystallized salts.

		Acid.	Base.	Water.	
Carbonate of potash	-	-	42.01	48.92	9.07
Sub-carbonate of ditto	-	-	23.83	.56 .17	20.0
Carbonate of soda	-	-	49.95	29.85	20.20
Sub-cardonate of ditto	-	-	13.98	23.33	62.69

Scting apart the water of crystallization, M. Berard has given the following table of the composition of neutral salts, deduced: from his own experiments.

Salts: Muriate of potash	- -	$\begin{gathered} \text { Base. } \\ 66.66 \end{gathered}$	$\begin{aligned} & \text { Acid. } \\ & 33.34 \end{aligned}$	$\begin{gathered} \text { Total. } \\ 100 \end{gathered}$
-- soda	- -	57.00	43.00	100
Sulphate of barytes	*	67.70	32.30	100
- potash	-	57.24	42.76	100
soda		47.22	52.78	100
Nitrate of potas'?	-	48.64	51.36	100
Carbonate of petash	- -	53.81	46.19*	100.
- soda	- -	44.38	55.62	100
Sub-carbonate of potash	-	70.21	29.79	100
- soda		62.53	37.47	100

VIII-On the C'ombustion of different Kinds of Charcoal-the, Prohortions of Oxysen and Carbon in Carbonic Acid-and the Combustion of Hydrogen Gas.
M. Saussure has lately published a memoir on this subject, which contains very ample and. interesting details. \dagger Its great length, however, will prevent me from giving more than a summary of the results of his experiments.

Plumbago, he found, when burned in oxygen gas, gives only

[^12]carbonic acid and oxide of iron, without any mixture either of water or hydrogen gas. The products of this combustion' establish that 100 grains of plumbago consist of 96 grains of carbon and four of iron; and that 100 grains of carbonic acid contain between 27.04 and 27.38 grains of carbon.

Next to plumbago, the purest kind of charcoal, which M. Saussure was able to procure, was that obtained by transmitting through a red-hot tube, the essential oil of rosemary. Its combustion afforded no water, and only a very minute quantity of carburetted hydrogen, too small in amount to affect the accuracy of the results. The composition of carbonic acid, deduced in this way, was 27.11 carbon and 72.89 oxygen.

The combustion of anthracite (glance-coal or stone-coal) and of charcoal of box-wood gave a product both of water and of carburetted hydrogen too considerable to allow much confidence to be placed in the results. The same substances were formed when charcoal was used, which had been employed in preparing the liquid sulphuretted hydrogen.* Hence it may be inferred that sulphur does not deprive charcoal of its hydrogen. M. Saussure is disposed to admit, with Mr. Davy, that sulphur contains both oxygen and hydrogen ; the former of which, he supposes, unites with the hydrogen, while the latter combines with the carbon.

The conclusion, that oxygen gas sustains no change of volume by conversion into carbonic acid, is not impeached by these experiments. But when any of those varietics of charcoal were used, which contain hydrogen, a small increase of volume took place, if the hydrogen happened to escape unburned; and a diminution, if it was wholly consumed during the combustion.

In the course of his inquiries, M. Saussure had occasion to make some observations on several eudiometrical processes. Limewater and even barytes water, he finds, are not adapted for removing small quantities of carbonic acid from oxygen gas; because the water of the solution acts on oxygen gas; of which it absorbs a small quantity abandoning at the same time a little nitrogen. A much better agent is the concentrated solution of potash, used over mercury, and in a quantity barely sufficient to effect the absorption.

The eudiometer of Volta, M. Saussure has found, in common with other chemists, not to be perfectly accurate. If the oxygen gas be in excess, the nitrogen which it contains, it is well known,

[^13]is apt to be condensed into nitric acid.* But it even appears, from M. Saussure's researches, that an excess of bydrogen does not insure precision; for, in this case, he has discovered that nitrate of ammonia is generated. The slow inflammation of hydrogen gas and of all the varieties of carburetted hydrogen in atmospheric air, is attended with a production of nitrate of ammonia.
Lastly, M. Saussure has added the important observation that all the varieties of hydrogen gas, even those which hitherto have been deemed quite pure, whether obtained by the solution of metals in dilute acids; by the decomposition of water by Voltaic electricity ; or by passing ammonia through a red-hot tube, contain charcoal and probably even oxygen also, for they all yield carbonic acid when inflamed with an excess of oxygen gas. When there is a deficiency of oxygen. the carbon remains unconsumed; but in this case the residuary hydrogen contains a greater proportional quantity of charcoal. The purest hydrogen, that M. Saussure has been able to obtain, yielded, by combustion with a redundance of oxygen, a quartity of carbonic acid equal to three thousandths of its bulk.

IX.-On the Tenacity of Ductile Metals.

M. Guyton Morveau has lately made a series of experiments on the tenacity of metals, the results of which do not exactly accord with those which have been heretofore obtained. With regard to copper, platina, silver, gold, and iron, his experiments agree with the statement given by Dr. Thomson in his System of Chemistry; but with respect to other metals they differ considerably.

It has generally been stated that lead, by the process of flatting, contrary to other metals, sustains a diminution of specific gravity;

[^14]and M. Morveau, on repeating the experiment, found it to be correct. But when the lead is prevented from escaping laterally, by stamping the metal in a very strong collar, its density was ascertained to be increased from 11.358 to 11.388.
M. Morveau has determincd, also, that the purest distilled water exerts a speedy action on lead, even when the water is contained in glass vessels, so as to exclude all galvanic influence. This effect, he finds, is connected with the presence of air in water ; that it ceases as soon as the water is no longer capable of furnishing air; and that it does not take place at all in water, which has been thoroughly purged of air by long boiling or by the air-pump. What is most singular, however, and would require farther experiment before it could be admitted, is, that the presence of any neutral salt, as the sulphates, nitrates, muriates, \&c. even, for instance, 0.002 of sulphate of lime, is sufficient to obstruct this action both in open and covered vessels.

X.-Propertics of Nickel.

A set of experiments on nickel have lately been made by Professor Tourte of Berlin,* in consequence of his having to prepare a needle of that metal for the Rnyal Mineralogical Cabinet.

The colour of nickel, he comparcs to that of silver of twelve deniers heated to redness. The metal takes a fine polish, and has then a lustre intermediate between that of steel and platina. When ignited, the colour is changed to that of antique bronze. The intensity of this colour increases every time the metal is heated, and a stain of oxide is left which is removed by nitric acidWhen ignited in oxygen gas, it burns and throws out sparks.

At $54 \frac{1}{2}^{\circ}$ Fahrenheit M. Tourte found the specific gravity of nickel slightly hammered 8.402, and thoroughly hammercd 8.932 . It is ductile and tenacious, and may be drawn into the slenderest wire. It cannot easily be soldered, on account of a crust of oxide which forms on its surface. Its power of conducting heat is superior to that of either zinc or copper, with both of which it was compared.

The magnetic property of nickel is very remarkablc, and is retained after being alloyed with a minute quantity of arsenic. $O x$ idation, however, diminishes it, even when the metal is oxidized only to such a degree as to be slightly tarnished. Heating it redhot, for six times in succession, destroyed also its magnetic powe er. Its polarity, M. Tourte considers as entirely acquired, and as never existing without the previcus application of a magnct.

[^15]
APPENDIX II.

CONSISTING OF VARIOUS USEFUL TABLES.

No. I.
CORRESPONDENCE BETWEEN ENGLISH AND FOREIGN WEIGETS AND MEASURES.

I.-English Weights and Measures.

Troy Weight.

$$
\begin{aligned}
& 1=0.06475
\end{aligned}
$$

Avoirdupois Weight.

$$
\begin{aligned}
& \text { Measures. }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { \&igal. }}{1}=\stackrel{\text { Pints. }}{8}={ }_{128}^{\text {Ounces. }}={ }_{1644}^{\text {Drans. }}={ }_{2.31}^{\text {Cub. Inches. }}={ }_{3.78515}^{\text {Litree. }} \\
& 1=16=128=28875=0.47398 \\
& 1=8=1.8047=0.02957 \\
& 1=0.2256=0.00396
\end{aligned}
$$

N. B.-The English ale-gallon contains 282 cubical inches.
II.-German.

71 Ibs. or grs. English troy, $\quad=74 \mathrm{lbs}$ or grs. German apothecaries weight.
1 oz. Nuremberg, medic. weight, $=7$ dr. 2. sc. 9 gr. English. 1 mark Cologne,

$$
\begin{aligned}
& =7 \text { oz. } 2 \text { dwt. } 4 \text { gr. Eng } \\
& \text { lish troy. }
\end{aligned}
$$

$$
\mathrm{II} .- \text { Duich. }
$$

1 lb. Dutch, $=1 \mathrm{lb} .3 \mathrm{oz} .16$ dwt. 7 gi . English troy. $787 \frac{1}{2}$ Ibs. Dutch, $=1038$ Jbs. English troy.
IV.-Sivedish Weights and Measures, used by Bergman and Scheele.
The Swedish pound, which is divided like the English apothecary, or troy, pound, weighs 6556 grs . troy.

The kanne of pure water, according to Bergman, weighs 42250 Swedish grains, and occupies 100 Swedish cubical inches. Hence the kanne of pure water weighs 48088.7 i 9444 English troy grains, or is equal 10189.9413 English cubic inches; and the Swedish longitudual inch is equal to 1.238435 English longitudinal inches.

From these data the following rules are deduced:

1. To reduce Swedish longitudinal inches to English, multiply by 1.2384 , or divide by 0.80747 .
2. To reduce Swadish to English cubical inches, multiply by 1.9 , or divide by 0.5265 .
3. To reduce the Swedish pound, ounce, dram, scruple, or grain, to the corresponding English troy denomination, multiply by 1.1382 , or divide by .8786 .
4. To reduce the S wedish kannes to English wine pints, multiply by .1520207 , or divide by 6.57805 .
5. To reduce Swedish kannes to English wine gallons, multiply by 82225 or divide by 1.216 .
6. The lod, a weight sometimes used by Bergman, is the 32d part of the common Swedish pound of 16 oz . and the 24th part of the pound of 12 oz . Therefore to reduce it to the English troy pound, multiply by .03557 , or divide by 28.1156 .
V.-Correspondence of English Weights and Mcasures with those used in France bcfore the Revolution.
§1.-Weights.

The Paris pound, foids de marc of Charlemagne, contains 9216 Paris grains; it is divided into 16 ounces, each ounce into 8 gros, and each gros into 72 grains. It is equal to 7561 English troy grains.

The English troy pound of 12 ounces contains 5760 English troy grains, and is equal to 7021 Paris grains.

The English avoirdupois pound of 16 ounces contains 700 English troy grains, and is equal to 8532.5 Paris grains.

To reduce Paris graius to Eaglish troy grains, di-7 vide by
To reduce English troy grains to Paris grains mul-
tiply by $\mathbf{1 . 2 1 8 9}$
To reduce Paris ounces to English troy, divide by $\}$
To reduce Euglish troy ounces to Paris, multiply by $\} 1.015734$

Or the conversion may be made by means of the following tables:
1.-To reduce French to English Troy Weight.
$\left.\begin{array}{lrr}\text { The Paris pound } & =7561 \\ \text { The ounce } & = & 472.5625 \\ \text { The gros } & = & 59.0703 \\ \text { The grain } & = & .8204\end{array}\right\}$ English troy grains.
2.-To reduce English Troy to Paris Weight.

The English troy pound of 12 ounces $=7021$.
The troy ounce - - $\quad=585.0833$
The dram of $60 \mathrm{grains} \quad-\quad=73.1354$
The penny-weight or denier of 24$\}=29.2541$ Paris grains.
grains - - $\}=29.2541$
The scruple of 20 grains $\quad=24.3784$
The grain - - \quad - 1.2189 J
3.-To reduce English Avoirduhois to Paris Weight.
$\left.\begin{array}{c}\text { The avoirdupois pound of } 16 \text { ounc- } \\ \text { es, or, } 7000 \text { troy grains }\end{array}\right\}=8538$.
es, or, 7000 troy grains $-\quad\}=8538 . \quad$ Paris grs.
The ounce

6. II--Long and cubical measures.

To reduce Paris running feet, or inches, into Eng-
lish, multiply by
English running feet, or inches, into Paris, divide by
To reduce Paris cubic feet, or inches, to English,
multiply by
English cubic feet, or inches, to Paris, divide by
Or by means of the following tables:
4.-To reduce Paris Long Measure to English.

The French toise $=6.3945$ English feet.
The Paris royal foot of 12 inches $=12.7977$
$\left.\begin{array}{lll}\text { The inch }- & - & .0664 \\ \text { The line, or } 1-12 \text { th of an inch } & = & .0888\end{array}\right\}$ English inches.
The $1-12$ th of a line $-=.0074$ J
5.-To reduce English Long Measure to French.

The English foot
$=11.25967$
The inch
The 1-8th of an incb - $=.1175$ Paris inches.
The 1-10th
The 1-12th
$-\quad=.0938$
. $\quad=.0782$
6. -To reduce French Cube Measure to English. $\left.\begin{array}{c}\text { The Paris cube } \\ \text { foot }\end{array}\right\}=1.211278$. $\left.\left.\begin{array}{l}\text { English } \\ \text { The cubic inch }=.000700\end{array}\right\} \begin{array}{r}2093.088384 . \\ \text { cubical } \\ \text { feet, or }\end{array}\right\}$ inches.

7.-To reduce English Cube Measure to French.*

$\left.\begin{array}{l}\text { The English cube foot, or } 1728 \\ \text { cubical inches }\end{array}\right\}=1427.4864$ \} French cubiThe cubical inch - $=.8260\}$ cal inches. The cube tenth - - $=.0008$ J

\oint ifi-measure of capacity.

The Paris pint contains $58.14 .5 \dagger$ English cubial inches, and the English wine pint contains 28.875 cubical inches; or, the Paris pint contains 2.0171082 English pints, and the English pint contains 49617 Paris pints; hence,

To reduce the Paris pint to the English, multi-?
ply by - - - - - - . 2.0171082
To reduce the English pint to the Paris, divide by \int
The septier of Paris is 7736 French, or 9370.45 Enclish, cubical inches; and the muid is 92832 French, or 112445.4 English, cubical inches.

To convert the weight of a Frencl cubic foot, of any particular substance given in French grains, into the corresponding weight of an English cubic foot in English troy grains, multiply the French grains by 0.6773181 , and the product is the number of English troy grains contained in an English cubic foot of the same substance.
\dagger It is said by Belidor, Archit. Hydraul. to contain 31 oz .64 grs. of water, which makes it 58.075 English inches; but, as there is considerable uncertainty in the determinations of the weight of the French, cubical measure of water, owing to the uncertainty of the standards made use of, it is better to abide by. Mr. Everard's measure, which was made by the Exchequer standards, and by the proportions of the English and French foot, as established by the French Academy and Royal Society.

According to Beaume, the Paris pint contains 32 French ounces of water, at the temperature of 54.5° of F:uhrenheit; which would make it equat to 59.729 Eng!ish cubical inches.
VI.-Table, showing the Comparison between French and English Grains. (Poid de Marc.)

* Per Farey (Nicholson's Journal, xxii. 338,) 1 grain French $=0.8204$ English; 10,000 ditto $=8204$ ditto.
VII.-Table, showing the Comparison between French and English Cubical Inches.

VIII.-Nerw French Weights and Measures (calculated by Dr. Duncan, jun.)

1.-Measures of Length : the Metre being at 32°, and the Foot at 62°.

2.-Measures of Cafacity.

3.-Measures of Weight.

English Grains:

English Grains				
Milligramme	. 0154			
Centigramme	. 1544			
Decigramme	1.5444	Avo		
Gramme	15.4440			
Decagramme	154.4402	0		5.65
Hecatogramme	$=1544.4023$	0	3	8.5
Kilogramme	$=15444.0234$	2	3	5
Myriogramme	$=154440.2344$	22	1	2

1X.-Reduction of the Ounce Measures used by Dr. Priestley to Cubical Inches.

Ounce Measures.	French Cubical Inches.	English Cubical Inehes.
1	1.567	1.898
2	3.134	3.796
3	4.701	5.694
4	6.268	7.592
5	7.835	9.490
6	9.402	11.388
7	10.969	13.286
8	12.536	15.184
9	14.103	17.082
10	15.670	18.980
20	31.340	37.960
30	47.010	56.940
40	62.680	75.920
50	78.350	94.900
60	94.020	113.880
70	109.690	132.860
80	125.360	151.840
90	141.030	170.820
100	156.700	189.800
1000	1567.000	1898.000

X．－Table，showing the absolute Weights and Shecific Gravities of Gases，and the Quantity of èach absorbed by Water．
（Temperature 60° Fahrenheit，Barometer 30° ．）

KINi）OF GAS．		Specific Stand Water．	Gravi dard． Air.			
Water		1000				
Atmospheric air	31.	1.2279	1000 S	K．		
Orygen gas	34.	1.35	1103	K．	37.	H．
\％Ditto ditto	34.74	1.39	1127	D．		
告会\｛ Azotic gas	30.535	1.21	985	K．	1.53	H．
क人）Dito ditto	30.45	1.20	980	D．		
Hydrogen gas	2.613	0.1031	84	K．	1.61	H．
\％（Ammonia	18.16	0.715	585	K．		
\％${ }_{\text {W }}$	18.	0.713	580	D．	47500.	D．
Hydro－carburet from stag－\} nant water	20.66		666 D	Dal．	1.40	H．
$\stackrel{\sim}{\sim}$	14.5		468	Cr．		
（ $\begin{aligned} & \text { nitee charcoal } \\ & \text { Ditto from alcohol }\end{aligned}$	16.		516	Cr．		
0 Ditto from ether	20.		645	Cr ．		
\bigcirc Ditto from coal	20.2		650 D	Dal．		
Phosplruretied hydrogen	26.		839 D	Dal．	2.14	H．
\＃Sulphuretted ditto	34.286	1.36	1142		108.	H．
ค Ditto ditto	38.17		1231	Th．		
盛 $\begin{aligned} & \text { Olefiant gas } \\ & \text { Vapour of alcohol }\end{aligned}$	28.18		905	Dei．	12.5	Dal
\bigcirc－ $\begin{aligned} & \text { Vapour of alcohol } \\ & \text { Ditto of ether }\end{aligned}$	65.4 $70 . \dagger$		2100 D	Dal．		
w Carkonic oxide	30.	1.185	967	Cr	2.01	H．
Nitrous oxide	50.1	1.985	1615		86.	H．
6 Nitric oxide	37.	1.465	1193	K．	5.	H．
－LDitto ditto	34.3	1.36	1105	D．		
\％Carbonic acid	46.5	1.84	1500	K．	108.	H．
Ditto ditto	45.5	1.802	1470	D．		
5 Muriatic acid	44.7 ？	1.765	1430	B．	51500.	T．
Ditto ditto	59.8		1929	K．		
－ 4 Nitric acid	76.	3.	2425	D．		
4 Sulphurous	70.215	2.75	$2240 \mid$	K．	3300.	T．

B．Brison；Cr．Cruickshank；D．Davy；Dal．Dalton；Dei，

 Deiman ；H．Henry ；K．Kirwan ；S．Shuckburgh；T．Thomp－ son；Th．Thenard．[^16]XI.-Table of the Shecific Gravities of various Simple and Comhound Gases.
(Gay Lussac, Memoires d' Arcueil, vol. ii. p. 252.)

(1) Supposing the contraction of the elements to be one half their total volumé.
(2) The contraction of the elements being supposed equal to the whole -xygen gas.
(3) The contraction being supposed equal to half the whole volume.
(4) Supposing that 100 carbonic acid produce 100 carbonic oxide ; and lose, at the same time, 50 oxygen.
(5) Supposing the contraction equal to the volume of the oxygen gas,
(6) Supposing the condensation to be half the total volume.

XII.-Table of.the Prohortions of several Compounds, whose Elements are Gaseous.
 (Gay Lussac, Mem. d^{\prime} Arcueit, vol. ii. p. 253.

SUBSTANCES.	Proportions	in volume.	Proportrons	in weight.
Mur. of ammonia	100 ammon. gas	100 mur. gas	38.35	acid 61.6
Neutral carbon. of $\}$ ammonia	100 ditto	100 car. ac. gas	do. 28.19	do. 71.81
Sub-carbon. of do. .	100 ditto	50 ditto	do. 43.98	do. 56.02
Fluobor.' of do.	100 ditto	100 fluob. gas		
Sub-fluob. of do.	100 ditto	50 ditto		
Water	100 hyd. gas	50 oxygen gas	ox. 86.733	hyd. 13.267
Nitrous oxide	100 nitrogen gas	50 ditto	nit. 63.72	ox. 36.28
Nitrous gas	100 ditto	100 ditto	do. 46.757	do. 53.243
Nitric acid	100 ditto	203 ditto	do. 30.512	do. 69.488
Ditto ditto	200 nitrous gas	100 ditto	do. do.	do. do.
Nitrous acid gas	300 ditto	100 ditto	do. 34.507	do. 65.493
Ammonia	100 nitrogen gas	300 hyd . gas	do. 81.525	do. 18.4ヶ5
Sulphuric acid	100 sulphs.ac.gas	50 oxygen gas	sulr:42.016	do. 57.984
Sulphurous acid			do. 52.083	do. 47.917
Oxymur. acid gas	300 m . ac. gas	100 ditto	m. ac. 77.65	do. 22.35
100 carbon. acid	100 carb.ox. gas	50 ditto	carb.27.376	do. 72.624
100 ditlo ditto		100 ditto	do. do.	do.
$\underline{100 ~ c a r b o n i c ~ o x i d e ~}$	50 ox g. gas		carb. 42.99	do. 57.01

XIII.-Rules for reducirg the Volume of Gases to a mean height of the Barometer, and mean Temperature.

1. From the stace occuftied by any quantity of gas under an observed degrce of thressure, to infer what its volume would be under the mean hetight of the barometer, taking this at 30 inches, as is now most usual.

This is done by the rule of proportion ; for, as the mean height is to the observed height, so is the observed volume to the volume required. For exainple, if we wish to know what space would be filled, under a pressure of 30 inches of mercury, by a quantity of gas, which fills 100 inches, when the barometer is at 29 inches,
$30 \quad: \quad 29: \quad: \quad 100 \quad$: 96.66.
The 100 inches would, therefore, be reduced to 96.66 .
2. To estimate what would be the tolume of a tortion of Sas, if brought to the temperature of 60° Fahrenheit.

Divide the whole quantity of gas by 430 ; the quotient will show the amount of its expansion or contraction by each degrec of Fahrenheit's thermometer. Muitiply thi by the number of degrees which the gas exceeds, or falls below, 60°. If the temperature of the gas be above 60°, subtract, or if below 60°, add, the product to the absolute quantity of gas; and the remainder in the first case, or sum in the second, will be the answer. Thus, to find what space 100 cubic inches of gas at 50° would occupy if raised to 60°, divide 100 by 480 ; the quotient 0.208 multiplied by 10 gives 2.08 ,
which arded to 100 , gives 102.08 the answer required. If the temperature had been 70°, and we had wished to know the volume, which the gas would have occupied at 60°, the same number 2.08 must have been subtracted from 100 , and 97.92 would have been the answer.
3. In some cases, it is necessary to make a double correction, or to bring the gas to a mean both of the barometer and thermometer. We must then first correct the temperature, and afterwards the pressure. Thus to know what space 100 inches of gas at 70° Fahrenheit, and 29 inches baromcter, would fill at 60° Fahrenheit and 30 inches barometer, we first reduce the 100 inches, by the second process, to 97.92 . Then by the first

$$
\text { so }: 29: \quad: 97.92 \quad: \quad 94.63 .
$$

Or 100 inches, thus corrected, would be only 94.63 .
4. To ascertain what would be the absolute zucight of a given volume of sas at a mean temherature, from the known wwight of an equal volume at any other temherature; first, find by the second process what would be its bulk at a mean temperature; and then say, as the corrected bulk is to the actual weight, so is the observed bulk to the number required. Thus if we have, 100 cubic inches of gas weighing 50 grains at 50° Fahrenheit, if the temperature were raised to 60° they would expand to 102.08: And 102.08 : 50 : : 100 : 49.

Therefore 100 inches of the same gas at 60° would weigh 49 grains.
5. To learn the absolute weight of a given volume of gas under a mean piressure, from its known weight under an observed fressure, say, as the observed pressure is to the mean pressure, so is the observed weight to the corrected weight. For example, having 100 inches of gas which weigh 50 grains under a pressure of 29 inches, to know what 100 inches of the same gas would weigh, the barometer being 30 inches,

$$
29 \quad \vdots 30: \quad: \quad 50 \quad: \quad 51.72 .
$$

Then 100 inches of the same gas, under 30 inches pressure, would weigh 51.72 grains.
6. In some cases it is necessary to combine the two last calculations. Thus, if 100 inches of gas at 50° Fahrenheit, and under 29 inches pressure, weigh 50 grains, to find what would be the weight of 100 inches at 60° Fahrenheit, and under 30 inches of the barometer, first correct the temperature, which reduces the weight to 49 grains. Then,

29 : 30 : : 49 : 50.7.
One hundred inches, therefore, would weigh 50.7 grains

XIV.-Stiecific Gravities of Solid and Liquid Substances.*

	Specific Grav.		Specifie Grav.
		STONEA,	
Diamond, white, oriental	3.5212	Jasper, brown	2.6911
Topaz, oriental	4.0106	Granite, Egyptian	2.6541
Sapphire, oriental	3.9941	Rock crystal	2.6530
Garnet, Bohemian	4.1888	Chalcedony, bright	2.6640
Beryl, oriental	3.5489	Carrara marble	2.7168
Hyacinth, common	3.6873	Alabaster, oriental	2.7302
Emerald, from Peru	2.7755	Carnelian	2.6137
Crysolithe, from Brazil	2.6923	Slate, commor for roofs	2.8535
Amiethyst, oriental	2.651	Flint	2.5941
Ruby, orientar	4.2833	Agate, oriental	2.5901
		Portland-stone	2.533
stones, \&c.		Serpentine, green, Italian	2.4295
Ponderous spar	4.4300	Opal, noble	2.144
Porphyry	2.7651	Pumice-stone	0.9145

SALTS.

	Hassenfratz.	Kirwan.	Muschenbrock.	Newton.
Potash	1.7085	4.6215		
Lime	1.5233	2.3908	2.3700	
Magnesia	0.3460	2.3298		
Alumine	0.8200	2.0000		
Barytes	2.3740	4.0000		
Sulphate of potash	2.4073	2.636	2.398	
- alumine	1.7109		1.7260	1.714
- zinc	1.9120		1.9	1.712
- iron	1.8399		1.88	
-_ copper	2.1943	2.23		
Nitrate of potash	1.9369	1.933	1.901	1.900
Muriate of soda	2.2001		2.0835	2.143
Acetate of lead	2.3450		2.3953	
Super-tartrate of potash	1.9153		1.8745	
Sub-borate of soda	1.7230		1.7170	1.714
Carbonate of potash	2.0120		2.749	
-_- soda	1.3591	1.421		
- ammonia	0.9660	1.8245	1.5026	

	Specific Grav.		Specite
diiases and vitrifioations.		inflammables.	
Green bottle glass.	2.7325	Roll-sulphur	1.9907
French crystal glass	2.8922	Phosphorus	1.714
French mirror-glass, from St.		Pit-coal	1.3292
Cobir:	2.4882	Amber	1.0789
English flint-glass	3.3203	Heaviest charcoal	0.441
China porcelain	2.3847	Mrieral naphtha	0.708
		Camphor	0.9887
		Liquid ammonia	0.8970

* For the specific gravities of the metals, see Table of the Qualities of Metals, near the close of this Appendix.

Table of Snecific Gravities of Solid and Liquid Substances,-con:tinued.

	Specific Grav.	dienc	Speeific Grav.
Distilled water	1.0000	Common gum	1.4817
Sea-water	1.0263	Gum Arabic	1.4523
Water from the Asphaltic Sea	1.2403	Gum tragacanth	1.3161
acids.		GCM-RESINS.	
Sulphuric acid of commerce	1.8500	Asafoetida	1.3275
Sulphuric acid, real	2.1250	Scammonium, from Smyrna	1.2743
Nitric acid	1.5800	Galbanum	1.2120
Muriatic acid	1.1940		
Concentrated acetic acid	1.0626	Resins.	
		Guaiacum	1.2289
spirituous miquins.		Jalap	1.2185
Madeira wine	1.0382	Ammoniacum	1.2071
Cyder	1.0181	Benzoe	1.0924
Brown beer	1.0338	Sandarac	1.0920
Burgundy wine	0.9915	White resin	1.0819
Champaigne wine	0.962	Colophony	1.0441
Brandy	0.8371	Mastich	1.0742
Alcohol*	. 0.8293	Copal, transparent	1.0452
Nitric ether	0.9088	Elastic resin	0.9335
Acetic ether	0.8664		
Sulphuric ether	0.7396	inspissated juices.	
Muriatic ether	0.7296	Aloe succotrina	1.3795
		Opium	1.3366
Ethereaf oils.			
Oil of cinnamon	1.0439	woods.	
Oil of cloves	1.0363	Lignum guaiacum	1.3330
Oil of lavender	0.8938	Box wood, Dutch	1.3280
Spirit of turpentine	0.8697	French box wood	0.912
		Ebony	1.2090
finat oils.		Heart of old oak	1.1700
Linseed oil	0.9403	Mahogany	1.063
Poppy oil	0.9283	Olive tree	0.9279
Oil of sweet almonds	0.9170	Mulberry tree, Spanish	0.8970
Olive oil	0.9153	Beech tree	0.8520
		Yew tree, Spanish	0.8070
ANIMAL ELUIDS.		Apple tree	0.7930
Asses' milk	1.0355	Plum tree	0.7850
Cows' milk	1.0324	Maple tree	0.7550
Human milk	1.0203	Cherry tree	0.7150
Human urine	1.0106	Quince tree	0.7050
		Orange tree	0.7050
animal fats.		Walnut tree	0.6710
Spermaceti	0.9433	Pear tree	0.6610
Butter	0.9423	Cypress, Spanish	0.6440
Tallow	0.9419	Pine tree	0.5500
Mutton suet	0.9235	White Spanish poplar tree	0.5294
Train oil	0.9235	Cork	0.2400
IIogs' lard	0.9568		
Ivory	1.825		
Bees' wax	0.9648		

[^17]XV.-Rules for calculating the Absolute from the Shecific Gravin ties of Bodies.
In 1696, Mr. Livcrard, balance maker to the Exchequcr, weighed before the commissioners of the House of Commons 2145.6 cubical inches, by the Exchequer standard foot, of distilled water, at the temperature of 55° of Fahrenheit, and found it to weigh 1131 oz .14 dts. troy, of the Exchcquer standard. The beam turned with 6 grs. when loaded with 30 pounds in each scalc. Hence, supposing the pound avoirdupois to weigh 7000 grs . troy, a cubic foot of water weighs $62 \frac{1}{2}$ pounds avoirdupois or 1000 ounces avoirdupois, wanting 106 grains troy. And hence, if the spccific gravity of water be called 1000 , the proportional specific gravities of all other bodies will ncarly express the number of avoirdupois ounces in a cubic foot. Or, more accurately; supposing the specific gravity of water expressed by 1 , and of all other bodies in proportional numbers, as the cubic foot of water weighs, at the above tcmperature, exactly 437489.4 grains troy, and the cubic inch of water 253.175 grains, the absolute wcight of a cubical foot or inch of any body in troy grains may be found by multiplying their specific gravity by either of the above numbers respectively.

By Everard's experiment, and the proportions of the English and French foot, as established by the Royal Socicty and French Academy of Sciences, the following numbers are ascertained:
Paris grains in a Paris cube foot of water $\quad=64551 \mathrm{I}$
English grains in a Paris cube foot of water $\quad=529922$
Paris grains in an English cube foot of water $=533247$
English grains in an English cube foot of watcr $\quad=437489.4$
English grains in an English cube inch of water $=253.175$
By an experiment of Picard with the measure and
weight of the Chatelet, the Paris cube foot of water contains of Paris grains

$$
=641326
$$

By one of Du Hamel, made with grcat care $\quad=64.1376$
By Homberg
$=641666$
Thesc show some uncertainty in measurc or in weights; but the above computation from Everard's experiment may be relied on, because the comparison of the foot of England with that of France was made by the joint labour of the Royal Society of London and the French Academy of Sciences : it agrees likewise very ncarly with the weight assigned by M. Lavoisicr, 70 Parig pounds to the cubical foot of water.
XVI.-Table for reducing the Degrees of Baume's Hydrometcr to the Common Standard.
Baume's Hydrometer for Liquids lighter than Water.
Temperature 55° Fahrenheit, or 10° Reaumur.

Deg.	Sp. Gr.						
10	1.000	18	.942	26	.892	34	.847
11	.990	19	.935	27	.886	35	.842
12	.985	20	.928	28	.880	36	.837
13	.977	21	.922	29	.874	37	.832
14	.970	22	.915	30	.867	38	.827
15	.963	23	.909	31	.871	39	.822
16	.955	24	.903	32	.856	40	.817
17	.949	25	.897	33	.852		

Baume's Hydrometer for Liquids heavier than Water.
Temperature 55° Fahrenheit, or 10° Reaumur.

Deg.	Sp. Gr.						
0	1.000	21	1.170	42	1.414	63	1.779
3	1.020	24	1.200	45	1.455	66	1.848
6	1.040	27	1.230	48	1.500	69	1.920
9	1.064	30	1.261	51	1.547	72	2.000
12	1.089	33	1.295	54	1.594		
15	1.114	36	1.333	57	1.659		\therefore
18	1.140	39	1.373	60	1.717		

XVII.-Table, showing the Shecific Gravity of Mixtures of Alcohol and Water.*

specific gravities.

Centesimal parts of the Mixture.

Alcohol . 100
95
According to Chaussier.

According to
Chaussier. Gilpin

0.7980	(last table.)
0.825	
0.8340	0.83887
0.8485	0.85244
0.8620	0.86414
0.87525	0.87606
0.8880	0.88762
0.9005	0.89883
0.9120	0.90941
0.9230	0.91981
0.9334	0.92961
0.94265	0.93882
0.9514	0.94726
0.95865	0.95493
0.96535	0.96158
0.97035	0.96736
0.97605	0.97239
0.9815	0.97723
0.9866	0.98213
0.99335	0.98737
0.99835	0.99327

[^18]XVIII.-Table, showing the Quantity of real Acid in Sulhhuric Acid of different D"ensities.*

Real Acid per cent. by Weight. OU	Specific Gravities. Unknown	Real Acid per cent. by Weight.	Speeific Gravities.
81	1.850	67	1.780
80	1.849	67	1.769
79	1.848	66	1.757
78	1.847	65	1.744
77	1.845	64	1.730
76	1.842	63	1.715
75	1.838	62	1.699
75	1.833	61	1.684
74	60	1.670	
73	1.827	50	1.520
72	1.819	40	1.408
71	1.810	30	1.300
70	1.801	20	1.200
69	1.791	10	1.100

XIX.-Table, showing the Quantity of hure Ammonia condensed in Solutions of different Shecific Gravities.

* For this and the nineteentli table, I am indebted to the obliging communication of Mr. Dalton. The table of the quantity of real acid in sulphuric acid of clifferent densities, which has been copied from Mr. Kirwan into almost every elementary book, he finds to be deficient in accuracy. Even Mr. Davy's table of the quantity of ammonia in various solutions of that alkali, Mr. Dalton has found not to correspond exactly with his own. expcriments, the results of which are expressed in table XIX.

No. II.

admeasurement and effectit of heat.

I.-Correstondence between different Thermometers.

Fahrenheit's thermometer is universally used in this kingdom. In this instrument the range between the freezing and boiling points of water is divided into 186°; and as the greatest possible degree of cold was supposed to be that produced by mixing snow and muriate of soda, it was made the zero. Hence the freezing point became 32°, and the boiling point 212°.

The Centigrade thermometer places the zero at the freezing point, and divides the range between it and the boiling point into 100°. This has long been used in Sweden under the title of Celsius's thermometer.

Reaumur's thermometer, which was formerly used in France, divides the space between the freezing and boiling of water into 80°, and places the zero at the freezing point.

Wedgwood's pyrometer is only intended to measure very high temperatures. Its zero corresponds with 1077° of Fahrenheit's, and each degree of Wedgwood is equal to 150° of Fahrenheit.

De Lisle's thermometer is used in Russia. The graduation begins at the boiling point, and increases towards the freezing point. The boiling point is marked 0 , and the freezing point 150 .

Therefore $180^{\circ} \mathrm{F} .=100^{\circ} \mathrm{C} .=80^{\circ} \mathrm{R} .=150^{\circ} \mathrm{D} .=\frac{18}{13} \mathrm{~W}$.

1. To reduce centigrade degrees to those of Fahrenheit, multitiply by 9 and divide by 5 , and to the quotient add 32 , that is, $\frac{C . \times 9}{5}+32=F$.
2. To reduce Fahrenheit's degrees to centigrade, $\frac{\text { F. }-32 \times 5}{9}$ $=\mathrm{C}$.
3. To reduce Reaumur's to Fahrenheit's we have the following formula, $\frac{\mathrm{R} \times 9}{4}+32=\mathrm{F}$.
4. To convert Fahrenheit to Reaumur, $\frac{\mathrm{F} \cdot-32 \times 4}{9}=$ R.
5. To reduce De Lisle's degrees under the boiling point, we
have $F .=212-\frac{D . \times 6}{5}$. To reduce those above the boiking point, F. $=312 \times \frac{\text { D. } \times 6}{5}$.
6. And, inversely, to reduce Fahrenheit's degrees to Dc Lislc's, under the boiling point $\frac{1060-5 \mathrm{~F}}{6}=\mathrm{D}$. ; above the boiling point $\frac{15 \times 5-1060}{6}=\mathrm{D}$.
7. To reduce Wedgwood's degrees to those of Fahrenheit, we have $\mathrm{W} \times 130+1077=\mathrm{F}$.
\&. Inversely, to reduce Fahrenheit to Wedgwood, $\frac{\mathrm{F}-1077}{130}=W$.

Table, showing the Correshondence between the Degraes of Faho renheit's Thermometer and the new Scale of Mr. Dalton (see vol. i. page 89.)

32. - - $\quad 32$. - - 32
39.1 - - - 39.3 - - - 42
46.6 - - $47 . \quad$ - - 52
54.44- - - $55 . \quad$ - - 62
62.55 - - 63.3 - - - 72
71.04 - . - $72 . \quad$ - - 82
79.84 - - $81 . \quad$ - - 92
89.02 - - - 90.4 - - . . 102
98.49 - - - 101.1 - . . 112
108.3 - - - 110 . . - 122
118.5 - - - 120.1 - - . 132
129. - - - 130.4 - - - 142
139.9 - - - 141.1 - . . 152
151. - - - 152. - - - 162
162.4 - - - 163.3 - - . 172
177.4 - - - $175 . \quad$ - - 182
186.5 - - - 186.9 - - - 192
199. - - - 199.2 - - - 202
212. - - - $212 . \quad$ - - 212
$\overline{359.1}$ - . - . . . 312
539.8 - - - - - 412
754.7 - - $\quad . \quad . \quad 512$
1000. - - - - . 612
1285. - 712
yox. 15. $4: 5$
Eahrenheit.
-55
4 6
59
36
2 2
11
7
2 0

```
```

```
II.-Table of the Effects of Heat.
```

```
II.-Table of the Effects of Heat.
    1.-Freezing Points of Liquids.
    1.-Freezing Points of Liquids.
    +1 Strongest sulphuric'acid (Cavendish)
    +1 Strongest sulphuric'acid (Cavendish)
            16 Oil of turpentine (Macquer)
```

 16 Oil of turpentine (Macquer)
    ```
```

 Strongest nitric acid freezes (Cavendish)
    ```
    Strongest nitric acid freezes (Cavendish)
    Ether and liquid ammonia
    Ether and liquid ammonia
    Mercury
    Mercury
    Sulphuric acid (Thomson)
    Sulphuric acid (Thomson)
    Acetous acid
    Acetous acid
    2 Alcohol, 1 water
    2 Alcohol, 1 water
    Brandy
    Brandy
    Strong wines
    Strong wines
    Fluoric acid
    Fluoric acid
    Oils bergamot and cinnamon
    Oils bergamot and cinnamon
    Human blood
    Human blood
    Vinegar
    Vinegar
    Milk
    Milk
    Oxymuriatic acid
    Oxymuriatic acid
    Water
    Water
    Olive oil
    Olive oil
    Sulphuric acid, specific gravity 1.78 (Keir)
    Sulphuric acid, specific gravity 1.78 (Keir)
    Oil of anniseeds, 50 (Thomson)
    Oil of anniseeds, 50 (Thomson)
                                    2.-Melting Points of Solids,
                                    2.-Melting Points of Solids,
    Equal parts sulphur and phosphorus
    Equal parts sulphur and phosphorus
    Adipocire of muscle
    Adipocire of muscle
    Lard (Nicholson)
    Lard (Nicholson)
    Phosphorus (Pelletier)
    Phosphorus (Pelletier)
    Resin of bile
    Resin of bile
    Myrtle wax (Cadet)
    Myrtle wax (Cadet)
    Spermaceti (Bostock)
    Spermaceti (Bostock)
    Tallow (Nicholson) }92\mathrm{ (Thomson)
    Tallow (Nicholson) }92\mathrm{ (Thomson)
    Bces' wax
    Bces' wax
    Ambergris (La Grange)
    Ambergris (La Grange)
    Bleached wax (Nicholson)
    Bleached wax (Nicholson)
    Bismuth 5 parts, tin 3, lead 2
    Bismuth 5 parts, tin 3, lead 2
    Sulphur (Hope) 212 (Fourc.) }185\mathrm{ (Kirw.)
    Sulphur (Hope) 212 (Fourc.) }185\mathrm{ (Kirw.)
    Adipocire of biliary calculi (Fourcroy)
    Adipocire of biliary calculi (Fourcroy)
    Tin and bismuth, equal-parts-
    Tin and bismuth, equal-parts-
    Camphor
    Camphor
    Tin 3, lead 2,or tin 2, bismuth 1
    Tin 3, lead 2,or tin 2, bismuth 1
    Tin (Chrichton) 413 (Irvine)
    Tin (Chrichton) 413 (Irvine)
    Tin 1, lead 4
    Tin 1, lead 4
    Bismuth (Irvine)
    Bismuth (Irvine)
    Lead (Chrichton) 594 (Irv.) }540\mathrm{ (Newton'%
    Lead (Chrichton) 594 (Irv.) }540\mathrm{ (Newton'%
    Zinc
    Zinc
    Antimony
```

 Antimony
    ```
\begin{tabular}{|c|c|c|}
\hline Fahren, & Wedg. & \\
\hline \(38 \cup 9\) & 21 & Brass \\
\hline 4587 & 27 & Copper \\
\hline 4717 & 28 & Silver \\
\hline 5237 & 32 & Gold \\
\hline 17977 & 130 & Cobalt \\
\hline 20577 & :150 & Nickel \\
\hline 21097 & 154 & Soft nails \\
\hline 21637 & 158 & Iron \\
\hline 21877 & 160 & Mangarese \\
\hline 23177 & \(+170\) & Platina, lungsten, molybdena, uranium, titanium, \&c. \\
\hline & & 3. Solids and Liquids Volatilized. \\
\hline 98 & & Ether boils \\
\hline 140 & & Liquid ammonia boils \\
\hline 145 & & Camphor sublimes (Venturi) \\
\hline 170 & & Sulpliur evaporates (Kirwan) \\
\hline 176 & & Alcohol boils, 174 (Black) \\
\hline 212 & & Water and essential oils boil \\
\hline 219 & & Phosphorus distils (Pelletier) \\
\hline 230 & & Muriate of lime boils (Dalton) \\
\hline 242 & & Nitrous acid boils \\
\hline 248 & & Nitric acid boils \\
\hline 283 & & White arsenic sublimes \\
\hline 540 & & Metallic arsenic sublimes \\
\hline 554 & & Phosphorus boils \\
\hline 560 & & Oil of turpentine boils, about \(212^{\circ}\) (Dal.) \\
\hline 570 & & Sulpliur boils \\
\hline 590 & & Sulphuric acid boils (Dalton) 546 (Black) \\
\hline 600 & & Linsced oil boils, sulphur sublimes (Davy) \\
\hline 660 & & Mercury boils (Dalton) 644 (Secondat) 600 (Black) 672 (Irvine) \\
\hline & & 4. Miscellaneous Effects of. Heat. \\
\hline -90 & & Greatest cold produced by Mr. Walker \\
\hline 50 & & Natural cold observed at Hudson's Bay \\
\hline 23 & & Observed on the surface of the snow at Glasgow, 17.80 \\
\hline 14 & & At Glasgow, 1780 \\
\hline 0 & & Equal parts, snow and salt \\
\hline \(+43\) & & Phosphorus burns slowly \\
\hline 59 & & Vinous fermentation begins \\
\hline 66 & & to 135, Animal putrefaction \\
\hline 75 & & to 80, Summer heat in this Climate \\
\hline 77 & \(\cdots\) & Vinous fermentation rapid, acetous begins \\
\hline 80 & & Phosphorus burns in oxygen, 104 (Gottling) \\
\hline 88 & & Acetification ceases \\
\hline 96 & & to 100 , Animal temperature \\
\hline
\end{tabular}


In the 5 th volume of "Menoirs of the Manchester Society," the following valuable table of the force of vapour, for cach degree of Fahrenheit, is given by Mr. Dalton; the numbers below \(212^{\circ}\) from experiment, and the higher numbers from calculation. Mr . Betancourt, however, professes to have obtained all the a: pove results from actual experiment.

Table of the Force of Vafoour from Water in every Temtierature from that of the Congelation of Mercury, or \(40^{\circ}\) below zero of Fahrenheit, to \(325^{\circ}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Temperature. & Force of Va pour in Inches of Mercury. & Tempera- & Force of Va pour in Inches of Mercury. & Temperature. & Force of Vapour in Inches of Mercury. \\
\hline -40 & . 013 & 37 & . 237 & 80 & 1.00 \\
\hline - 30 & . 020 & 38 & . 245 & 81 & 1.04 \\
\hline - 20 & . 030 & 39 & . 254 & 82 & 1.07 \\
\hline - 10 & . 043 & 40 & . 263 & 83 & 1.10 \\
\hline & & 41 & . 273 & 84 & 1.14 \\
\hline 0 & . 064 & 42 & . 283 & 85 & 1.17 \\
\hline 1 & . 066 & 43 & . 294 & 86 & 1.21 \\
\hline 2 & . 068 & 44 & . 305 & 87 & 1.24 \\
\hline 3 & . 071 & 45 & . 316 & 88 & 1.28 \\
\hline 4 & . 074 & 46 & . 328 & 89 & 1.32 \\
\hline 5 & . 076 & 47 & . 339 & 90 & 1.36 \\
\hline 6 & . 079 & 48 & . 351 & 91 & 1.40 \\
\hline 7 & . 082 & 49 & . 363 & 92 & 3.44 \\
\hline 8 & . 085 & 50 & . 375 & 93 & 1.48 \\
\hline 9 & . 087 & 51 & . 388 & 94. & 1.53 \\
\hline 10 & . 090 & 52 & . 401 & 95 & 1.58 \\
\hline 11 & . 093 & 53 & . 415 & 96 & 1.63 \\
\hline 12 & . 096 & 54 & . 429 & 97 & 1.68 \\
\hline 13 & . 100 & 55 & . 443 & 98 & 1.74 \\
\hline 14. & . 104 & 56 & . 458 & 99 & 1.80 \\
\hline 15 & . 108 & 57 & . 474 & 100 & 1.86 \\
\hline 16 & . 112 & 58 & . 490 & 101 & 1.92 \\
\hline 17 & . 116 & 59 & . 507 & 102 & 1.98 \\
\hline 18 & . 120 & 60 & . 524 & 103 & 2.04 \\
\hline 19 & . 124 & 61 & . 542 & 104 & 2.11 \\
\hline 20 & . 129 & 62 & . 560 & 105 & 2.18 \\
\hline 21 & . 134 & 63 & . 578 & 106 & 2.25 \\
\hline 22 & . 139 & 64 & . 597 & 107 & 2.32 \\
\hline 23 & . 144 & 65 & . 616 & 108 & 2.39 \\
\hline 24 & . 150 & 66 & . 635 & 109 & 2.4 .6 \\
\hline 25 & . 156 & 67 & . 655 & 110 & 2.58 \\
\hline 26 & . 162 & 68 & . 676 & 111 & 2.60 \\
\hline 27 & . 168 & 69 & . 698 & 112 & 2.68 \\
\hline 28 & . 174 & 70 & . 721 & 113 & 2.76 \\
\hline 29 & . 180 & 71 & . 745 & 114 & 2.84 \\
\hline 30 & . 186 & 72 & . 770 & 115 & 2.92 \\
\hline 31 & . 193 & 73 & . 796 & 116 & 3.00 \\
\hline & & 74. & . 823 & 117 & 3.68 \\
\hline 32 & . 200 & 75 & . 851 & 118 & 3.16 \\
\hline 33 & . 207 & 76 & . 880 & 119 & 3.25 \\
\hline 34 & . 214 & 77 & . 910 & 120 & 3.33 \\
\hline 35 & . 221 & 78 & . 94.0 & 121 & 3.42 \\
\hline 36 & . 229 & 79 & . 971 & 122 & 3.50 \\
\hline
\end{tabular}

Table of the Force of Vaftour, Erc.-continued.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Temperature. & Force of Vapour in Inches of Mercury. & Temperature. & Force of Vapour in Inches of Mercury & Temperature. & Porce of Kaz pour in Inches of Mercury. \\
\hline 123 & 3.59 & 168 & 11.54 & & \\
\hline 124 & 3.69 & 169 & 11.83 & 213 & 80.60 \\
\hline 125 & 3.79 & 170 & 12.13 & 214 & 31.21 \\
\hline 126 & 3.89 & 171 & 12.43 & 215 & 31.83 \\
\hline +127 & 4.00 & 172 & 12.73 & 216 & 32.46 \\
\hline 128 & 4.11 & 173 & 13.02 & 217 & 33.09 \\
\hline 123 & 4.22 & 174 & 1332 & 218 & 33.72 \\
\hline 130 & 4.34 & 175 & 13.62 & 219 & 34.35 \\
\hline 131 & 4.47 & 176 & 13.92 & 220 & 34.99 \\
\hline 132 & 460 & 177 & 14.22 & 221 & 35.63 \\
\hline 133 & 4.73 & 178 & 14.52 & 222 & 36.25 \\
\hline 134 & 4.86 & 179 & 14.83 & 223 & 3688 \\
\hline 135 & 5.00 & 180 & 15.15 & 234 & 37.53 \\
\hline 136 & 5.14 & 181 & 1550 & 225 & 38.20 \\
\hline 137 & 5.29 & - 182 & 15.85 & 226. & 58.89 \\
\hline 158 & 5.44 & 183 & 1623 & 227 & 39.59 \\
\hline 139 & 5.59 & 184 & 1661 & 228 & 4 U .30 \\
\hline 140 & 5.74 & 185 & 17.00 & 229 & 4102 \\
\hline 141 & 5.90 & 186 & 1740 & 230 & 41.75 \\
\hline 142 & 6.05 & 187 & 17.80 & 231 & 42.49 \\
\hline 143 & \(6.21{ }^{\text {² }}\) & 188 & 18.20 & 232 & 43.24 \\
\hline 144 & 6.37 & 189 & 18.60 & 233 & 4.4 .00 \\
\hline 145 & 6.53 & 190 & 19.00 & 234 & 44.78 \\
\hline 146 & 6.70 & 191 & 19.42 & 235 & 4.5 .58 \\
\hline 147 & 687 & 102 & 19.86 & 236 & 46.39 \\
\hline 148 & 7.05 & 193 & 21.32 & 237 & 47.20 \\
\hline 14.9 & 7.23 & 194 & 20.77 & 238 & 48.02 \\
\hline 150 & 7.42 & 195 & 2122 & 239 & 4884 \\
\hline 151 & 7.61 & 196 & 21.68 & 240 & 49.67 \\
\hline 152 & 7.81 & 197 & 22.13 & 241 & 50.50 \\
\hline 153 & 8.01 & 198 & 22.69 & 242 & 51.34 \\
\hline 154 & 8.20 & 199 & 2316 & 243 & 52.18 \\
\hline 155 & 8.40 & 200 & 23.64 & 244 & 53.03 \\
\hline 156 & 8.60 & 211 & 24.12 & 245 & 55.88 \\
\hline 157 & 8.81 & 2.2 & 24.61 & 246 & 54.68 \\
\hline 158 & 9.02 & 203 & 25:10 & 247 & 55.54 \\
\hline 159 " & 9.24 & 204 & 25.61 & 248 & 56.42 \\
\hline 160 & 9.46 & 205 & 26.13 & 249 & 57.31 \\
\hline 161 & 9.68 & \(2 \cup 6\) & 26.66 & 250 & 58.21 \\
\hline 162 & 9.91 & 207 & \({ }^{\circ} 27.20\) & 251 & 59.12 \\
\hline 163 & 10.15 & 208 & 27.74 & 252 & 60.05 \\
\hline 164 & 10.4 .1 & 209 & 28.29 & 25.3 & 61.00 \\
\hline 165 & 10.68 & 210 & 28.84 & 254 & 61.92 \\
\hline 166 & 10.96 & 211 & 29.41 & 255 & 62.85 " \\
\hline 167 & 11.25 & 212 & 30.00 & 256 & 63.76 \\
\hline
\end{tabular}

Table of the Force of Vahour, E'c.-continued.
\begin{tabular}{cc|cccc}
\begin{tabular}{c} 
Tempera- \\
ture.
\end{tabular} & \begin{tabular}{c} 
Force of Va- \\
pour in \\
Inches of \\
Mercury.
\end{tabular} & \begin{tabular}{c} 
Tempera- \\
ture.
\end{tabular} & \begin{tabular}{c} 
Force of Va- \\
pour in \\
Inches of \\
Mercury.
\end{tabular} & \begin{tabular}{l} 
Tempera- \\
ture.
\end{tabular} & \begin{tabular}{c} 
Force of Vat \\
pour in \\
Inches of \\
Mercury.
\end{tabular} \\
257 & 64.82 & 280 & 88.75 & 303 & 115.32 \\
258 & 65.78 & 281 & 89.87 & 304 & 116.50 \\
259 & 66.75 & 282 & 90.99 & 305 & 117.68 \\
260 & 67.73 & 283 & 92.11 & 306 & 118.86 \\
261 & 68.72 & 284 & 93.23 & 307 & 120.03 \\
262 & 69.72 & 285 & 94.35 & 308 & 121.20 \\
263 & 70.73 & 286 & 95.48 & 309 & 122.37 \\
264 & 71.74 & 287 & 9.6 .64 & 310 & 123.53 \\
265 & 72.76 & 288 & 97.80 & 311 & 124.69 \\
266 & 73.77 & 289 & 98.96 & 312 & 125.85 \\
267 & 7479 & 290 & 100.12 & 313 & 127.00 \\
268 & 75.80 & 291 & 101.28 & 314 & 128.15 \\
269 & 76.82 & 292 & 10245 & 315 & 129.29 \\
270 & 77.85 & 293 & 10363 & 316 & 130.43 \\
371 & 78.89 & 294 & 104.80 & 317 & 131.57 \\
272 & 79.94 & 295 & 105.97 & 318 & 132.72 \\
273 & 86.98 & 296 & 107.14 & 319 & 133.86 \\
274 & 82.01 & 297 & 108.31 & 320 & 135.00 \\
275 & 83.13 & 298 & 109.48 & 321 & 136.14 \\
276 & 84.35 & 299 & 110.64 & 322 & 137.28 \\
277 & 85.47 & 300 & 111.81 & 323 & 138.42 \\
278 & 86.50 & 301 & 11298 & 324 & 139.56 \\
279 & 87.63 & 302 & 114.15 & 325 & 140.70
\end{tabular}
IV.-Table of the Exhansion of Air by Heat.
(Commuincated by Mr, Dalton.)
\begin{tabular}{cc|cc|cc|cc} 
Falran. & & Fahren. & & Fahren. & & Fahren. & \\
32 & 1000 & 53 & 1050 & 74 & 1097 & 95 & 1142 \\
33 & 1002 & 54 & 1052 & 75 & 1099 & 96 & 1144 \\
34 & 1004 & 55 & 1055 & 76 & 1101 & 97 & 1146 \\
35 & 1007 & 56 & 1057 & 77 & 1104 & 98 & 1148 \\
36 & 1009 & 57 & 1059 & 78 & 1106 & 99 & 1150 \\
37 & 1012 & 58 & 1062 & 79 & 1108 & 100 & 1152 \\
38 & 1015 & 59 & 1064 & 80 & 1110 & 110 & 1173 \\
39 & 1018 & 60 & 1066 & 81 & 1112 & 120 & 1194 \\
40 & 1021 & 61 & 1069 & 82 & 1114 & 130 & 1215 \\
41 & 1023 & 62 & 1071 & 83 & 1116 & 140 & 1235 \\
42 & 1025 & 63 & 1073 & 84 & 1118 & 150 & 1255 \\
43 & 1027 & 64 & 1075 & 85 & 1121 & 160 & 1275 \\
44 & 1030 & 65 & 1077 & 86 & 1123 & 170 & 1295 \\
45 & 1032 & 66 & 1080 & 87 & 1125 & 180 & 1315 \\
46 & 1034 & 67 & 1082 & 88 & 1128 & 190 & 1334 \\
47 & 1036 & 68 & 1084 & 89 & 1130 & 200 & 1354 \\
48 & 1038 & 69 & 1087 & 90 & 1132 & 210 & 1372 \\
49 & 1040 & 70 & 1089 & 91 & 1134 & 212 & 1376
\end{tabular}
V.-Table of the Exhansion of Liquids by Heat.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Temp. & Mercurs. & Linseed Oil. & Sulphuric
Acid. & Nitric Acid. & Water. & \[
\left\lvert\, \begin{gathered}
\text { Oil of } \\
\text { rurpentine }
\end{gathered}\right.
\] & Alcohol. \\
\hline \(32^{\circ}\) & 100000 & 100000 & & & & & 100000 \\
\hline 40 & 100081 & & 99752 & 99514 & & & 100539 \\
\hline 50 & 100183 & & 100000 & 100000 & 100023 & 100000 & 101105 \\
\hline 60 & 100304 & & 100279 & 100486 & 100091 & 100460 & 101688 \\
\hline 70 & 100406 & & 100558 & 100990 & 100197 & 100993 & 102281 \\
\hline 80 & 100508 & & 100806 & 101530 & 100332 & 101471 & 102890 \\
\hline 90 & 100610 & & 101054 & 102088 & 100694 & 101931 & 103517 \\
\hline 100 & 100712 & 102760 & 101317 & 102620 & 100908 & 102446 & 104162 \\
\hline 110 & 100813 & & 101540 & 103196 & & 102943 & \\
\hline 120 & 100915 & & 101834 & 103776 & 101404 & 103421 & \\
\hline 130 & 101017 & & 102097 & 104352 & & 103954 & \\
\hline 140 & 101119 & & 102320 & 105132 & & 104573 & \\
\hline 150 & 101220 & & 102614 & & 102017 & & \\
\hline 160 & 101322 & & 102893 & & & & \\
\hline 170 & 101434 & & 103116 & & & & \\
\hline 180 & 101526 & & 103339 & & & & \\
\hline 190 & 101628 & & 103587 & & 103617 & & \\
\hline 200
212 & 101730
101835 & 107250 & 103911 & & 104577 & & \\
\hline
\end{tabular}
VI.-Table of the Expansion of Water by Heat.
(From Mr. Dalton's New System of Chemical Philosophy.)
\begin{tabular}{c|c||l|c} 
Temperature. & Expansion. & Temperature. & Expansion. \\
\hline \(12^{\circ}\) Fahren. & 100236 & \(122^{\circ}\) Fahren. & 101116 \\
22 & 100090 & 132 & 101367 \\
32 & 100022 & 142 & 101638 \\
42 & 100000 & 152 & 101934 \\
52 & 100021 & 162 & 102245 \\
62 & 100083 & 172 & 102575 \\
72 & 100180 & 182 & 102916 \\
82 & 100312 & 192 & 103265 \\
92 & 100477 & 202 & 103634 \\
102 & 100672 & 212 & 104012 \\
112 & 100880 & &
\end{tabular}
VII.-Table of the Expransion of Solids by Heat.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. & Platina. 1 & Antimon. & Steel. & Iron. & Cast Iron. & Bismuth. \\
\hline \(32^{\circ}\) & 120000 & 120000 & 120000 & 120000 & 120000 & 120000 \\
\hline 212 & 120104 & 120130 & 120147 & 120151 & & 120167 \\
\hline \[
\left\{\begin{array}{l}
\text { White } \\
\text { heat }^{*}
\end{array}\right\}
\] & & & 123428 & 121500 & 122571 & \\
\hline & & & & & & \(\cdots\) \\
\hline \multicolumn{7}{|l|}{} \\
\hline & & \begin{tabular}{l}
Cast \\
Brass.
\end{tabular} & Brass Wire & Tin. & Lead. & Zinc. \\
\hline \(32^{\circ}\) & 120000 & 120000 & 120000 & 120000 & 120000 & 120000 \\
\hline 212 & 120204 & 120225 & 120232 & 120298 & 120344 & 120355 \\
\hline \multicolumn{7}{|l|}{} \\
\hline & Hamm'd & Zinc 8 & Lead 2 & Brass 2 & & Copper 3 \\
\hline & Zinc. & Tin 1 & Tin 1 & Zinc 1 & Pewter. & Tin\# 1 \\
\hline \(32^{\circ}\) & 120000 & 120000 & 120000 & 120000 & 120000 & 120000 \\
\hline 212 & 120373 & 120323 & 120301 & 120247 & 120274 & 120218 \\
\hline
\end{tabular}

Exhansion of Glass.
\begin{tabular}{|c|c||c|c||c|c|}
\hline Temp. & Bulk & Temp. & Bulk. & Temp. & Bulk, \\
\hline \(32^{\circ}\) & 100000 & \(100^{\circ}\) & 100023 & \(167^{\circ}\) & 100056 \\
50 & 100006 & 120 & 100033 & 190 & 100069 \\
70 & 100014 & 150 & 100044 & 212 & 100083 \\
\hline
\end{tabular}
* Rinman.
+ Borda.
\(\neq\) The metal, whose expausion is hese given, was an alloy composed of three parts of copper, and one of tin. The figures in some of the preceding columns are to be understood in the same manner. Thus, in the last column but two, the metal consisted of two parts of brass, alloyed with one of zinc.
VIII.-Tables, exhibiting a collective View of all the Frigorific Mixtures, contained in Mr. Walker's Publication, 1808. (Communicated by Mr̂. Walker.)
1.-Table, consisting of Frigorific Mixtures, having the Power of generating or creating Cold, without the Aid of Ice, sufficient for all useful and fihilosofthical Purhoses, in any Part of the World, at any Season.

Frigorific Mixtures, without Ice.
\begin{tabular}{|c|c|c|c|}
\hline MIXtURES. & & Thermometer sinks. & Deg. of cold produced. \\
\hline Muriate of ammonia Nitrate of potash Water & \[
\begin{aligned}
& 5 \text { parts } \\
& 5 \\
& 16
\end{aligned}
\] & From \(+50^{\circ}\) to \(+10^{\circ}\) & 40 \\
\hline Muriate of ammonia Nitrate of potash Sulphate of soda Water & \[
\begin{gathered}
5 \text { parts } \\
5 \\
8 \\
16
\end{gathered}
\] & From \(+50^{\circ}\) to \(+4^{\circ}\) & 46 \\
\hline Nitrate of ammonia Water & \[
1 \text { part }
\] & From \(+50^{\circ}\) to \(+4^{\circ}\) & 46 \\
\hline Nitrate of ammonia Carbonate of soda Water & \[
\begin{aligned}
& 1 \text { part } \\
& 1 \\
& 1
\end{aligned}
\] & From \(+50^{\circ}\) to \(-7^{\circ}\) & 57. \\
\hline Sulphate of soda Diluted nitric acid & \[
\begin{aligned}
& 3 \text { parts } \\
& \hline
\end{aligned}
\] & From \(+50^{\circ}\) to \(-3^{\circ}\) & 53 \\
\hline Sulphate of soda Muriate of ammonia Nitrate of potash Diluted nitric acid & \[
\begin{aligned}
& 6 \text { parts } \\
& 4 \\
& 2 \\
& 4
\end{aligned}
\] & From \(+50^{\circ}\) to \(-10^{\circ}\) & 60 \\
\hline Sulphate of soda Nitrate of ammonia Diluted nitric acid & 6 parts 5 4 & From \(+50^{\circ}\) to \(-14^{\circ}\) & 64 \\
\hline Phosphate of soda Diluted nitric acid & \[
9 \text { parts }
\] & From \(+50^{\circ}\) to \(-12^{\circ}\) & 62 \\
\hline Phosphate of soda Nitrate of ammonia Diluted nitric.acid & \[
\begin{aligned}
& 9 \text { parts } \\
& 6 \\
& 4
\end{aligned}
\] & From \(+50^{\circ}\) to \(-21^{\circ}\) & 71 \\
\hline Sulphate of soda Muriatic acid & \[
\frac{8 \text { parts }}{5}
\] & From \(+50^{\circ}\) to \(0^{\circ}\) & 50 \\
\hline Sulphate of soda Diluted sulphuric acid & \[
5 \text { parts }
\] & From \(+50^{\circ}\) to \(+3^{\circ}\) & 47 \\
\hline
\end{tabular}
N. B.-If the materials are mixed at a warmer temperature than that expressed in the table, the effect will be proportionably greater; thus, if the most powerful of these mixtures be made, when the air is \(+85^{\circ}\) it will sink the thermometer to \(+2^{\circ}\).
2.-Table, consisting of Frigorific Mixtures, composed of Ice, quith chemical Salts and Acids.

Frigorific mixtures with Ice.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MIXTURES.} & Thermometer sinks. & Deg. of cold produced. \\
\hline Snow, or pounded ice Muriate of soda & \[
\frac{2 \text { parts }}{1}
\] & to - \(5^{\circ}\) & * \\
\hline Snow, or pounded ice Muriate of soảa Muriate of ammonia & \[
\begin{aligned}
& 5 \text { parts } \\
& 2 \\
& 1
\end{aligned}
\] & 苞 to \(-12^{\circ}\) & * \\
\hline Snow, or pounded ice Muriate of soda Muriate of ammonia Nitrate of potash & \[
\begin{gathered}
24 \text { parts } \\
10 \\
5 \\
5
\end{gathered}
\] & to \(-18^{\circ}\) & * \\
\hline Snow, or pounded ice Muriate of soda Nitrate of ammonia & \[
\begin{gathered}
12 \text { parts } \\
\mathbf{5} \\
\mathbf{5}
\end{gathered}
\] & \[
\text { to }-25^{\circ}
\] & * \\
\hline \begin{tabular}{l}
Snow \\
Diluted sulphuric acid
\end{tabular} & \[
\frac{3}{2} \text { parts }
\] & From \(+32^{\circ}\) to - \(23^{\circ}\) & 55 \\
\hline \begin{tabular}{l}
Snow \\
Muriatic acid
\end{tabular} & \[
8 \text { parts }
\] & From \(+32^{\circ}\) to \(-27^{\circ}\) & 59 \\
\hline \begin{tabular}{l}
Snow \\
Diluted nitric acid
\end{tabular} & \[
\begin{aligned}
& 7 \\
& 4
\end{aligned}
\] & From \(+32^{\circ}\) to \(-30^{\circ}\) & 62 \\
\hline \begin{tabular}{l}
Snow \\
Muriate of lime
\end{tabular} & \[
\frac{4}{4} \mathrm{parts}
\] & From \(+32^{\circ}\) to \(-40^{\circ}\) & 72 \\
\hline \begin{tabular}{l}
Snow . \\
Chryst. muriate of lime
\end{tabular} & \[
\begin{aligned}
& 2 \text { parts } \\
& \hline
\end{aligned}
\] & From \(+32^{\circ}\) to \(-50^{\circ}\) & 82 \\
\hline Snow Potash & \[
{ }_{4}^{3} \text { parts }
\] & From \(+32^{\circ}\) to - \(51^{\circ}\) & 83 \\
\hline
\end{tabular}
N.B.-The reason for the omissions in the last column of this table is \(s_{8}\) the thermometer sinking in these mixtures to the degree mentioned in the preceding column, and never lower, whatever may be the temperature of the materials at mixing
3.-Table, consisting of Frigorific Mixtures selected from thr foregoing Tables, and combined so as to increase or extend Cold. to the extremest Degrees.

Combinations of Frigorific Mixtures.
\begin{tabular}{|c|c|c|c|}
\hline MIXTURES. & & Thermometer sinks. & Deg. of cold produced. \\
\hline Phosphate of soda Nitrite of ammonia Diluted nitric acid & \[
\begin{aligned}
& 5 \text { parti } \\
& 3 \\
& 4
\end{aligned}
\] & From \(0^{\circ}\) to \(-34^{\circ}\) & 34 \\
\hline Phosphate of soda Nitrate of ammonia Diluted mixed acids & \begin{tabular}{l}
3 parts \\
2 \\
4
\end{tabular} & From \(-34^{\circ}\) to \(-50^{\circ}\) & 16 \\
\hline \begin{tabular}{l}
Snow \\
Diluted nitric acid
\end{tabular} & \[
\begin{aligned}
& 3 \text { parts } \\
& 2 \\
& \hline
\end{aligned}
\] & From \(0^{\circ}\) to \(-46^{\circ}\) & 46 \\
\hline \begin{tabular}{l}
Snow \\
Diluted sulphuric acid Diluted nitric acid
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
8 \text { parts } \\
3 \\
3 \\
3
\end{array} \\
& \hline
\end{aligned}
\] & From - \(10^{\circ}\) to - \(56^{\circ}\) & 46 \\
\hline \begin{tabular}{l}
Snow \\
Diluted sulphuric acid
\end{tabular} & \[
\begin{aligned}
& 1 \text { part } \\
& 1
\end{aligned}
\] & From - \(20^{\circ}\) to - \(60^{\circ}\) & 40 \\
\hline \begin{tabular}{l}
Snow \\
Muriate of lime
\end{tabular} & \[
\begin{aligned}
& 3 \text { parts } \\
& 4
\end{aligned}
\] & From \(+20^{\circ}\) to - \(48^{\circ}\) & 68 \\
\hline \begin{tabular}{l}
Snow \\
Muriate of lime
\end{tabular} & \[
\begin{aligned}
& 3 \text { parts } \\
& 4
\end{aligned}
\] & From \(+10^{\circ}\) to \(-54^{\circ}\) & 64 \\
\hline \begin{tabular}{l}
Snow \\
Muriate of lime
\end{tabular} & \[
\overline{2 \text { paris }}
\] & From - \(15^{\circ}\) to \(-68^{\circ}\) & 53 \\
\hline \begin{tabular}{l}
snow \\
Chryst. muriate of lime
\end{tabular} & \[
\begin{aligned}
& 1 \text { part } \\
& 2
\end{aligned}
\] & From \(0^{\circ}\) to \(-66^{\circ}\) & 66 \\
\hline Snow Chryst. muriate of lime & \[
1 \text { part }
\] & From \(-40^{\circ}\) to \(-73^{\circ}\) & 33 \\
\hline \begin{tabular}{l}
Snow \\
Diluted sulphuric acid
\end{tabular} & \[
{ }_{10}^{8 \text { parts }}
\] & From -680 ta - \(91^{\circ}\) & 23 \\
\hline
\end{tabular}
N. B.-The materials in the first column are to be cooled, previously to mixing, to the temperature required, by mixtures taken from either of the preceding tables.
IX. -Table of the Specific Heats or Capacities of Bodies, altered from Dr. Thomson's System of Chemistry, ad Edition.
N. B. -The bodies compared are taken in equal weights, and the specific heat of water is assumed to be 1 .
\begin{tabular}{lr}
\multicolumn{2}{c}{ 1.-GASES. } \\
Hydrogen & 21.4000 (c.) \\
Oxygen & 4.74 .90 (c.) \\
Common air & 1.7900 (c.) \\
Carbonic acid & 1.0459 (c.) \\
Azote & 0.7036 (c.) \\
& 2.-water. \\
Ice & 0.9000 (k.) \\
Water & 1.0000 \\
Steam & 1.5500 (c.)
\end{tabular}
3.-Saline solutions.

Sulphuret of do.
(0.818)

Sulphate of magnesia
Water
Muriate of soda Water
Nitrate of pot\(\left.\begin{array}{cc}\text { ash } & 1 \\ \text { Water } & 8\end{array}\right\}\)
Ditto
Nitrate of pot -7
\(\left.\begin{array}{cc}\text { ash } & 1 \\ \text { Water } & 3\end{array}\right\} 0.646\) (ธ.)
Muriate of am\(\left.\begin{array}{lr}\text { mona } & 1 \\ \text { Water } & 1.5\end{array}\right\} \begin{array}{ll}0.798 & \text { (5.) }\end{array}\)
Water
Super-tartrate of \(\left.\begin{array}{lr}\text { potash } & 1 \\ \text { Water } & 273.3\end{array}\right\}\)
0.765 (к.)
\(\left.\begin{array}{lr}\text { Sulphate of iron } 1 \\ \text { Water } & 2.5\end{array}\right\} 0.734\) (к.)
\(\left.\begin{array}{lr}\text { Sulphate of soda } 1 \\ \text { Water } & 2.9\end{array}\right\} 0.728\) (к.)
Alum
Water
\(\left.\begin{array}{ll}\text { Nitric acid } & 9 \frac{1}{3} \\ \text { Lime } & 1^{3}\end{array}\right\} \quad 0.6189\) (土.)



6. -ANimal fluids.

Arterial blood 1.0500 (c.)
Venous blood 0.8928 (c.)
Cow's milk \(\quad 0.9999\) (c.)
7. -ANIMAL solids.

Ox-hide, with hair 0.7870 (c.)
Lungs of a sheep 0.7690 (c.)
Lean of ox-beef 0.7400 (c.)
\begin{tabular}{lr}
\multicolumn{2}{c}{ 8.-vegetable } \\
solids. \\
Minus sylvestris & 0.65 (M.) \\
Minus abies & 0.60 (м.) \\
Tilea Europæa & 0.62 (M.) \\
Sinus pice & 0.58 (M.) \\
Cyrus malus & 0.57 (M.) \\
Setula alnus & 0.53 (M.)
\end{tabular}
(C.) Crawford; (I.) Irvine, jun.; (K.) Kirwan; (L.) Lavoisier and

La Place; (LE.) Leslie ; (M.) Meyer ; (R.) Mumford; (W.) Wilcke;
\begin{tabular}{|c|c|}
\hline \(\left.\begin{array}{l}\text { Quercus robur'ses- } \\ \text { silis }\end{array}\right\} 0.51\) (M.) & Copper \(\quad\left\{\begin{array}{c}0.1111(\mathrm{c} .) \\ 0.114(\mathrm{w} .)\end{array}\right.\) \\
\hline Fraxinus excelsior 0.51 (M.) & Shet iron 0.!099 (L.) \\
\hline Pyrus communis 0.50 (m.) & Gun metal 0.1100 (n.) \\
\hline Rice 0.5050 (c.) & Zinc \(\quad\left\{\begin{array}{l}0.0943 \text { (c.) }\end{array}\right.\) \\
\hline Horse beans 0.5020 (c.) & Zinc - 0.102 (w.) \\
\hline \[
\left.\begin{array}{l}
\text { Dust of the pine } \\
\text { tree }
\end{array}\right\} 0.5000 \text { (c.) }
\] & Silver . \(\quad\left\{\begin{array}{l}0.082(\mathrm{w} .) \\ 0.068(\mathrm{k} .)\end{array}\right.\) \\
\hline Peas 0.4920 & Tin \(\quad\left\{\begin{array}{l}0.0704(\mathrm{L.})\end{array}\right.\) \\
\hline Fagus sylvatica 0.49 (M.) & 0.060 (w.) \\
\hline Carpinus betulus 0.48 (m.) & 0.086 (к.) \\
\hline Betula alba 0.48 (м.) & Antimony \(\quad\{0.0645\) (c.) \\
\hline Wheat 0.4770 (m.) & ( 0.063 (w.) \\
\hline Elm 0.47 (м.) & Gold 0.050 (w.) \\
\hline Quercus robur pe.
dunculata 0.45 (M.) & Lead \(\quad\left\{\begin{array}{r}0.050 \text { (\%.) } \\ 0.0352 \text { (c.) }\end{array}\right.\) \\
\hline Prunus domestica 0.44 (m.) & 0.042 (w.) \\
\hline Diaspyrus ebenum 0.43 (M) & Bismuth \\
\hline Barley 0.4210 (c.) & 0.053 (к.) \\
\hline Pit coal 0.2777 (c.) & Mercury \(\quad\left\{\begin{array}{l}0.0357 \text { (c.) } \\ 0.0200\end{array}\right.\) \\
\hline Charcoal 0.2631 (c.) & (L.) \\
\hline Oats 0.4160 (c.) & \\
\hline Cinders 0.1923 (c.) & \begin{tabular}{l}
12.-METALLiC OXIDES. \\
Oxide of iron 0.320 (k.)
\end{tabular} \\
\hline 9.-EARTHy bodies, stone & Reust of iron 0.2500 (c.) \\
\hline \begin{tabular}{ll} 
WaRE, AND Glass. \\
Chalk & 0.2564. \\
(c.)
\end{tabular} & \[
\left.\begin{array}{l}
\text { Do. nearly freed } \\
\text { from air }
\end{array}\right\} .1666 \text { (c.) }
\] \\
\hline \(\{0.2229\) (c.) & White oxide of 0.220 (k.) \\
\hline Quickime \(\left\{\begin{array}{l}0.2168 \text { (L.) }\end{array}\right.\) & antimony \(\} 0.2272\) \\
\hline Ashes of pit coal 0.1855 (c.) & washed \\
\hline - clm 0.1402 (c.) & Do. nearly freed 0.1666 \\
\hline Agate 0.195 (w.) & from air \(\}\) \\
\hline Stone ware 0.195 (к.) & Oxide of copper \(\} 0.2272\) (c.) \\
\hline Crystal 0.1929 (L.) &  \\
\hline Swedish glass 0.187 (w.) & Oxide of lead and \} 0.102 \\
\hline Flint glass 0.174. (k.) & Oxide of zinc \\
\hline \(\begin{array}{cc}\text { 10.-SLLPHUR } & 0.183 \\ 11 .-M E T A L S .\end{array}\) & \[
\left.\begin{array}{l}
\text { Oxide oftin, near- } \\
\quad \text { ly freed } \\
\text { from air }
\end{array}\right\} \begin{aligned}
& 0.0990 \text { (c.) } \\
& 0.096 \text { (k.) }
\end{aligned}
\] \\
\hline 0.125 (к.) & Yellow oxide of 0.0680 (c.) \\
\hline Iron \(\quad\left\{\begin{array}{r}0.1269(\mathrm{c} .) \\ 0.126(\mathrm{w} .)\end{array}\right.\) & lead \(\quad 0.068\) (k.) \\
\hline Brass \(\quad 0.1123\) (c.) & \\
\hline brass \(\{0.116\) (w.) & \\
\hline
\end{tabular}
X.-Table of Sfrecific Heats, from Mr. Dalton's New'System of' Chemical Philosofhy, Part 1.*
\begin{tabular}{|c|c|c|c|c|c|}
\hline GASES. & Equal \({ }_{\text {Weight }}\) & Equal Bulks. & SOLIDS. & \[
\begin{aligned}
& \text { Eq. } \\
& \text { Wt. }
\end{aligned}
\] & Eq. \\
\hline Hydrogen & 21.40 & .u42 & Ice & . 90 ? & . 83 \\
\hline Oxygen & 4.75 & . 006 & Dried woods, and & & \\
\hline Common air & 1.79 & . 062 & other vegetable & & \\
\hline Carbonic acid & 1.05 & . 0.2 & substances, from & & \\
\hline Azotic & . 79 & . 001 & . 45 to & . 65 & \\
\hline Aqueous vapour & 1.55 & . 001 & Quicklime & . 30 & \\
\hline & & & Pit-coal (1.27) & . 28 & . 36 \\
\hline & & & Charcoal & . 26 & \\
\hline LIQUIDS. & & & Chalk & . 27 & . 67 \\
\hline & & & Hydrat. lime & . 25 & \\
\hline Water & 1.00 & 1.00 & Flint glass (2.87) & . 19 & . 55 \\
\hline Arterial blood & 1.03 & & Muriate of soda & . 23 & \\
\hline Milk (1.026) & . 98 & 1.00 & Sulphur & . 19 & \\
\hline Carbonate of ammon. (1.035) & . 95 & . 98 & Iron & . 13 & 1.00 \\
\hline Carbonate of potash (1.30) & . 75 & . 98 & Brass & .11 & . 97 \\
\hline Solution of ammonia (.948) & 1.03 & . 98 & Copper & . 11 & . 98 \\
\hline Common vinegar (1.02) & . 92 & . 94 & Nickel & . 10 & . 78 \\
\hline Venous blood & . 89 & & Zinc & . 10 & . 69 \\
\hline Solut. of common salt (1.197) & . 78 & . 93 & Silver & . 08 & . 84 \\
\hline Solut. of sugar (1.17) & .77 & . 90 & Tin & . 07 & . 51 \\
\hline Nitric acid (1.20) & .76 & . 96 & Antimony & . 06 & . 40 \\
\hline Nitric acid (1.30) & . 68 & . 88 & Gold & . 05 & . 97 \\
\hline Nitric acid (1.36) & . 63 & . 85 & Lead & . 04 & . 45 \\
\hline Nitrate of lime (1.40) & . 62 & . 87 & Bismuth & . 04 & . 40 \\
\hline Sulph. acid and water, equal b & . 52 & 80
70 & & & \\
\hline Muriatic acid (1.153) & . 60 & . 70 & Oxides of the & & \\
\hline Acetic acid (1.036) & .66 & . 70 & metals surpass the & & \\
\hline Sulphuric acid (1.844) & .35 & . 65 & metals themselves, & & \\
\hline Alcohol (.85) & . 76 & . 65 & according to Craw- & & \\
\hline Alcohol (.817) & .70 & . 57 & ford. & & \\
\hline Sulphuric ether (.76) & . 66 & . 50 & & & \\
\hline Spermaceti oil (.87) & . 52 & . 45 & & & \\
\hline Mercury & . 04 & . 55 & & & \\
\hline
\end{tabular}
* I have added this table, though in some degree a repetition of the preceding one; because the bodies compared are taken in equal bulks, as well as in equal weights.

No. III.
1.-Table of the Solubility of Salts in Water.


Table of the Solubility of: Salts in Water-Continued.


V ©L, IB. 47

Table of the Solubility of Salts in Water_Continued.
\begin{tabular}{|c|c|c|}
\hline NAMES OF SALTS. & \begin{tabular}{l}
Solubil \\
At \(60^{\circ}\)
\end{tabular} & 100 Parts
At \(212^{\circ}\) \\
\hline \multicolumn{3}{|l|}{SALTS.} \\
\hline Sulphate of potash & 6.25 & 20. \\
\hline soda & 37. & 125. \\
\hline strontites & 0. & 0.02 \\
\hline Sulphite of ammonia & 100. & \\
\hline lime & 0.125 & \\
\hline magnesia & 5. & \\
\hline potash & 100. & \\
\hline soda & 25. & 100. \\
\hline Saccholactate of potash & & 12. \\
\hline , soda & & 20. \\
\hline Sub-borate of soda (borax) & 8.4 & 16.8 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Super-sulphate of alumine and}} \\
\hline & & \\
\hline potash & 50. & + 100 \\
\hline Super-oxalate of potash & & 10. \\
\hline tartrate of potash & \(1 . \frac{2}{3}\) & 3. \(\frac{1}{3}\) \\
\hline Tartrate of potash - & 25. & \\
\hline and soda - & 20. & \\
\hline antimony and potash & 6.6 & 33. \\
\hline
\end{tabular}
II.-Table of Substances soluble in Alcohol.
\begin{tabular}{|c|c|c|c|}
\hline names of subst & nces. & Temperature. & 100 Paris Aico
hol dissolve \\
\hline Acetate of copper & - - & \(176^{\circ}\) & 7.5 \\
\hline soda & - - & \(176^{\circ}\) & 46. \\
\hline Arsenate of potash & - - & do. & 3.75 \\
\hline soda & - - & do. & 1.7 \\
\hline Boracic acid & - - & do. & 20. \\
\hline Camphor - & - - & do. & 75. \\
\hline Muriate of ammonia & - - & do. & 7. \\
\hline alumine & - - & \(54 \frac{1}{2}^{\circ}\) & 100. \\
\hline copper & & \(176^{\circ}\) & 100. \\
\hline iron & - - & \(176^{\circ}\) & 100. \\
\hline lime & - - & do. & 100. \\
\hline magnesia & - - & do. & 547. \\
\hline mercury & - - & & 88.3 \\
\hline Nitrate of ammonia & - - & \(54 \frac{1}{20}^{\circ}\) & 100.
89.2 \\
\hline Nitrate of ammonia \({ }_{\text {alumine }}\) & - - & \(176^{\circ}{ }^{\circ}{ }^{\circ}\) & 89.2
100. \\
\hline cobalt & - - & \(54 \frac{1}{2}{ }^{\circ}\) & 100. \\
\hline lime & - - & & 125. \\
\hline putash & - - & \(176^{\circ}\) & 2.9 \\
\hline silver & - - & do. & 41.7 \\
\hline Succinic acid & - - & do. & 74. \\
\hline Sugar, refined & - - & do. & \(24 \frac{1}{2}\). \\
\hline Super-oxalate of potash & - - & & 3. \\
\hline Tartrate of potash & - & & 0.04 \\
\hline
\end{tabular}

Other substances soluble in alcohol.-All the acids, except the sulphuric, nitric, and oxymuriatic, which decompose it, and the phosphoric and metallic acids.-Potash, soda, and ammonia, very soluble. Soaps; extract; tan ; volatile oils; adipocire ; resins; urea.

Substanees insoluble, or very sparingly soluble, in al-conol.-Earths; phosphoric and metallic acids; almost all sulphates and carbonates ; the nitrates of lead and mercury ; the muriates of lead, silver, and soda (the last, her Chenevix, sparingly soluble;) the sub-borate of soda; the tartrate of soda and potash, and super-tartrate of potas!; fixed oils; wax ; starch; gum caoutchouc ; woody fibre; gelatine ; albumen, and gluten.
\begin{tabular}{|c|c|c|c|c|}
\hline salts. & nasis. & ACID. & Water. & state. \\
\hline Carbonate of potash & 41. & 43. & 16. & Crystallized. \\
\hline Pearlash - & 60. & 30. & 6. & Dry. \\
\hline Carbonate of soda & 21.58 & 14.42 & 64. & Fully crystallized. \\
\hline ditto & 59.86 & 40.05 & & Dessiccated. \\
\hline barytes & 78. & 22. & & Natural or ignited. \\
\hline strontian & 69.5 & 30. & & Natural or ignited. \\
\hline lime & 55. & 45. & & Natural if pure, or artificial ignited, \\
\hline magnesia & 25. & + 50. & 25. & Crystallized. \\
\hline Sulphate of potash & 45. & 34. & 21. & Dried at \(80^{\circ}\). \\
\hline Sulphate of potash & 54. & 45.2 & & Dry, \\
\hline soda
ditto & 18.48 & 23.52 & 58. & Fully crystallized. \\
\hline ditto & 44. & 56. & 1.1 & Desiccated at \(700^{\circ}\). \\
\hline barytes & 14.24 & 33.33 & 31.1 & Natural and pure, artificial ignited, \\
\hline strontian & 58. & 42. & & Natural and pure, artificial ignited, \\
\hline lime & 32 & 46. & 22. & Dried at \(66^{\circ}\) \\
\hline ditto & 35.23 & 50.39 & 14.38 & Dried at \(170^{\circ}\). \\
\hline ditto & 38.81 & 55.84 & 5.35 & Ignited. \\
\hline ditto & 41. & 59. & & Incandescent. \\
\hline magnesia
ditto & 17. & 29.35 & 53.65 & Fully crystallized. \\
\hline Alum ditto . & 36.68 & 63.32 & & Desiccated. \\
\hline Alum
Ditto & 12. ignited
63.75 & 17.66
36.25 & 51. of crystals + 19.24 in the earth. & Crystallized.
Desiccated at \(700^{\circ}\) \\
\hline
\end{tabular}

Table, showing the Composition of Salts,-Continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Salits. & - Hasis. & ACID. & Water. & STate. \\
\hline Nitrate of potash & 51.8 & 44. & 4.2 of Composition & Dried at \(70^{\circ}\). \\
\hline soda & 40.58 & 53.21 & 6.21 of Composition & Dried at \(400^{\circ}\). \\
\hline ditto & 42.34 & 57.55 & & Ignited. \\
\hline anmmonia & 23. & 57. & 20. & Sold \\
\hline barytes & 57. & 32. & 11. & Crystallized. \\
\hline strontian & 36.21 & 31.07
57 & 32.72 & Crystallized. \\
\hline magnesia & 32.
22. & 57.44
46. & 10.56 & Well dried, that is, in air. \\
\hline Muriate of potash & 64. & 36. & 22. & Crystallized. \\
\hline soda & 53. & 47. aqueous, 38.88 real & & Dried at \(80^{\circ}\). \\
\hline ammonia & & & & Crystallized. \\
\hline ditto & 25. & 42.75 & 32.25 & Sublimed. \\
\hline barytes & 64. & 20. & 16. & Crystallized. \\
\hline ditto & 76.2 & 23.8 & & Desiccated. \\
\hline strontian & 40. & 18. & 42. & Crystallized. \\
\hline ditto & 69. & 31. & & Desiccated. \\
\hline lime & 50. & 42. & 8. & Red hot. \\
\hline magnesia & 31.07 & 34.59 & 34.34 & Sensibly dry. \\
\hline
\end{tabular}

\section*{- IV.-Table of Incompatible Salts.* \\ SALTS. \\ incompatible with}
1. Fixed alkaline sulphates
2. Sulphate of lime
3. Alum
4. Sulphate of magnesia
5. Sulphate of iron
6. Muriate of barytes
7. Muriate of lime
8. Muriate of magnesia
9. Nitrate of lime

Nitrates of lime and magnesia,
Muriates of lime and magnesia.
Alkalis,
Carbonate of magnesia,
Muriate of barytes.
Alkalis,
Muriate of barytes,
Nitrate, muriate, carbonate of lime, Carbonate of magnesia.
Alkalis,
Muriate of barytes, Nitrate and muriate of lime. Aikalis,
Muriate of barytes, Earthy carbonates?
Sulphates,
Alkaline carbonates, Earthy carbonates. Sulphates, except of lime, Alkaline carbonates, Carbonate of magnesia.
\{ A!kaline carbonates, Alkaline sulphates.
Alkaline carbonates,
\(\{\) Carbonates of magnesia and alumine, Sulphates, except of lime.
V.-Quantity of Real Acid taken ut by mere Alkalis and Earths (Kirwan.)
\begin{tabular}{|c|c|c|c|c|}
\hline 100 Parts. & Sulpharic. & Nitric. & Miriatic. & Carbonic acid. \\
\hline Potash & 82.48 & 84.96 & 56.3 & 105, almost \\
\hline Soda & 127.68 & 135.71 & 73.41 & 66.8 \\
\hline Ammonia & 383.8 & 247.82 & 171. & Variable \\
\hline Baryt. & 50. & 56. & 31.8 & 282. \\
\hline Strontia & 72.41 & 85.56 & 46. & 43.2 \\
\hline Lime & 143. & 179.5 & 84.488 & 81.81 \\
\hline Magnesia & 172.64 & 210. & 111.35 & 200. Fourcroy \\
\hline Alumine & 150.9 & & & 335, nearly, Bergman \\
\hline
\end{tabular}
VI.-Quantity of Alkalis and Earths taken uh by 100 Parts of real Sulfhuric, Nitric, Muriatic, and C'arbonic Acids, Saturated (Kirquan.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 100 Parts. & Potash. & Snta. & Tranoma & B & Sirontia. & Li & N \\
\hline Sulphuric & 121.48 & 78.22 & 20.45 & 200. & 138. & 70. & 57.92 \\
\hline Nitrous & 117.7 & 73.3 & 40.35 & 178.12 & 116.86 & 55.7 & 47.64 \\
\hline Muriatic & 177.6 & 136.2 & 58.48 & 314.46 & 216.21 & 118.3 & 398. \\
\hline Carbonic & 95.1 & \(1<9.6\) & & 3.54.5 & \(231 .+\) & 122. & 50. \\
\hline
\end{tabular}

\footnotetext{
* That is, salts which cannot exist toget her in solution, witho muturl
} decomposition. for the Saturation of the different Acids.
(From Berthollet's Statique Chimique, 1re Partie, p. 136.
The experiments, from which the following table was deduced, we are assured by Berthollet, were the principal occupation of Richter from the year 1791 to 1800 ; and, from the attention with which they were performed, appear to be deserving of considerable confidence. An example will best explain the method of using the table. Take the article hotash in the first column, opposite to which is placed the number 1605. The numbers in the other column show how much of each acid is required to saturate 1605 parts of potash, viz. 427 parts of fluoric acid, 577 of carbonic acid, \&c. In a similar manner, take any acid in the second column, the ox 6 alic for instance; the first column shows how much of each base effects the saturation of 755 parts of oxalic acid, viz. 525 of alumine, 615 of magnesia, \&c.


No. IV.
I.-Table, shorving some of the Qualties of Metals; the Profore tion of Oxygen with which they combine; and the Colours of their Oxides.
(Compiled from two of the Tables ir Thomson's Chemistry.)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Metals. & Colour. & \(\left|\begin{array}{c}\text { Specific } \\ \text { Grav. }\end{array}\right|\) & \[
\left\lvert\, \begin{gathered}
\text { Fusing } \\
\text { Point. }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { No. of } \\
& \text { Oxides. }
\end{aligned}\right.
\] & Colours of Oxides. & Prop, of
Oxyg. \\
\hline Gold & Yellow & 19.361 & 32 W. & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Purple Yellow & 10. \\
\hline Platina & White & 23.000 & +170 W. & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Green Brown & \[
\begin{array}{r}
.7 \frac{1}{2} \\
0.15
\end{array}
\] \\
\hline Palladium & White & 11.871 & +160 W. & 1 & Blue Yellow? & \\
\hline Rhodium & White & \(+11\) & +160 W. & 1
2 & Yellow & \\
\hline Iridium & White & & +160 WV. & \[
\begin{array}{r}
-1 \\
2
\end{array}
\] & Blue ? Red ? & \\
\hline Osmium & Blue & & & 1 & Transparent & \\
\hline Silver & White & 10.510 & 22 W . & 1 & Olive & 12.8 \\
\hline Mercury & White & 13.568 & - 39 F . & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & Biack Red & \[
\begin{array}{r}
5 . \\
11 .
\end{array}
\] \\
\hline Copper & Red & 8.895 & 27 W & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
Red \\
Black
\end{tabular} & \[
\begin{aligned}
& 13 . \\
& 25 .
\end{aligned}
\] \\
\hline Iron & Blucishgrey & 7.788 & \(158 . \mathrm{W}\) & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & White Black Red & \begin{tabular}{l}
29. \\
31.6 \\
45.
\end{tabular} \\
\hline Tin & White & 7.299 & 442 F. & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Grey White & \[
\begin{aligned}
& 25 . \\
& 38.8
\end{aligned}
\] \\
\hline Lead & Blucishwhite & 11352 & 612 F & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
\] & Yellow Red Brown & \[
\begin{aligned}
& 10.6 \\
& 13.6 \\
& 2.5 .
\end{aligned}
\] \\
\hline Nickel & White & 8.666 & +160 W & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Green Black & \\
\hline
\end{tabular}

Table, showing some of the Qualities of Metals, E'c.-continued.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Metals. & Colour. & \[
\begin{gathered}
\text { Specific } \\
\text { Grav. }
\end{gathered}
\] & \begin{tabular}{l}
Fusing \\
Point.
\end{tabular} & \[
\begin{gathered}
\text { No. of } \\
\text { Oxides }
\end{gathered}
\] & \[
\begin{gathered}
\text { Colours of } \\
\text { oxides. }
\end{gathered}
\] & \[
\left|\begin{array}{l}
\text { Prop. of } \\
\text { Oxyg. }
\end{array}\right|
\] \\
\hline Zinc & White & 6.861 & 680 F . & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ylow } \\
& \text { White }
\end{aligned}
\] & \[
\begin{aligned}
& 13.6 \\
& 25 .
\end{aligned}
\] \\
\hline Bismuth & White & 9.822 & 476 F. & 1 & Yellow & 12. \\
\hline Antimony & Grey & 6.712 & 809 F. & 1 & White Ditto & \[
\begin{aligned}
& 22.7 \\
& 30 .
\end{aligned}
\] \\
\hline Arsenic & White & 8.310 & +400 F.? & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & White White (acid) & \[
\begin{aligned}
& 33 . \\
& 53 .
\end{aligned}
\] \\
\hline Cobalt & White & 7.700 & 130 W. & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & Bue - ireen Black & \\
\hline Manganese & White & 6.850 & +160 W. & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] &  & \[
\begin{aligned}
& \hline 25 . \\
& 35 . \\
& 66.6
\end{aligned}
\] \\
\hline Molybdena & Grey & 8.600 & +170 W & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
\] & Light brown Violet Blue White & \[
\begin{aligned}
& 34 . \\
& 50 .
\end{aligned}
\] \\
\hline Tellurium & White & 6.115 & \[
\begin{gathered}
+612 \mathrm{~F} . \\
\hline
\end{gathered}
\] & 1 & White & \\
\hline Tungsten & Greyishwhite & 17.6 & +170 W. & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Black Yellow & 25. \\
\hline Uranium & Grey & 9.000 & +170 W & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & Black Yellow & \[
\begin{gathered}
5.17 \\
28 .
\end{gathered}
\] \\
\hline Titanium & Red & & +170 W & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & Blue Red White & \\
\hline Chromium & White & & +170 W & \[
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & Green Brown Red & 200. \\
\hline Columbium & & & & & White & \\
\hline Tantaliun: & & & & & White & \\
\hline Cerium & White & 1 & & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & White Red & \\
\hline
\end{tabular}
N. B.-The numbers, in the last column of the foregoing table, denote the quantity of oxygen with which 100 parts of each metal combine. Thus, to form the black oxide of iron, 100 parts of the metal absorb 31.6 oxygen, and afford 131.6 of an oxide, which, in 109 parts, contains 24 of oxygen.In the column showing the fusing point, W. added to the numerals denotes the degrees of Wedgwood's pyrometer, and F. those of Fahrenheit's thermometer.
11.-Colour of the Precifitates thrown down from Metallic Solu. tions, by various Re-agents.
\begin{tabular}{|c|c|c|c|c|}
\hline Metals. & Prussiated Alkalis. & Tincture of Galls. & Water im-
pregnated
with Sul.
phuretted
Hydrogen. & Hydro-Sulphurets. \\
\hline Gold & Yellowishwhite & Solutionturned green. Precipitate brown of reduced gold & Yellow & Yellow \\
\hline Platina & No precip.;
but an o-
range col-
oured one
by pruss.
of mercur. & Dark green becoming paler & Precipitated in a metallic state & \\
\hline Silver \({ }^{*}\) & White & \[
\begin{aligned}
& \text { Yellowish } \\
& \text { brown }
\end{aligned}
\] & Black & Black \\
\hline Mercury & \[
\begin{aligned}
& \text { White, } \\
& \text { changing to } \\
& \text { yellow }
\end{aligned}
\] & Orange yellow & Black & Brownish black \\
\hline Palladium & \[
\begin{aligned}
& \text { Olive,* } \\
& \text { Deep 0- } \\
& \text { range. } \dagger
\end{aligned}
\] & & Dark brown & Dark brown \\
\hline Rhodium & No precip. & & & No precip. \\
\hline Iridium & No precipitate. Colour discharged. & \begin{tabular}{l} 
No precipi- \\
tate. Col- \\
our of so- \\
lutions dis- \\
charged \\
\hline
\end{tabular} & & \\
\hline Osmium & & Purple, changing to deep vivid blue & & \\
\hline Copper & Bright redish brown & Brownish & Black & Black \\
\hline \[
\text { Iron }\left\{\begin{array}{l}
1 . \text { Green salts } \\
2 . \text { Red salts }
\end{array}\right.
\] & White, changing to blue Deep blue & No precipitate. Black & Not precipitated & Black \\
\hline Nickel. & Green & Greyish white & Not precipitated & Black \\
\hline Tin & White & No. precip. & Brown & Black \\
\hline
\end{tabular}

\footnotetext{
* Chenevix,
\(\dagger\) Wollaston.
}

Colour of Precikitates from Metallic Solutions, Ec.-continued.
\begin{tabular}{|c|c|c|c|c|}
\hline Metals. & Prussiated Alkalis. & Tincture of
Galls. & \(|\)\begin{tabular}{l} 
Water im- \\
pregnated \\
with Sul- \\
phuretted \\
Hydrogen.
\end{tabular} & Hydro-Sulphurets. \\
\hline Lead & White & White & Black & Black \\
\hline Zinc & White & No. precip. & Yellow & White \\
\hline Bismuth & White & Orange & Black & Black \\
\hline Antimony & White & A white oxide merely from dilution. & Orange & Orange \\
\hline Tellurium & No precip. & Yellow & - & Blackish \\
\hline Arsenic & White & Little change & Yellow & Yellow \\
\hline Cobalt & Brownish yellow & \[
\begin{aligned}
& \text { Yellowish } \\
& \text { white }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Not precip- } \\
& \text { itated }
\end{aligned}
\] & Black \\
\hline Manganese & Yellowish white & No precip. & Not precipitated & White \\
\hline Chrome & Green & Brown & & Green \\
\hline Molybdena & Brown & Deep brown & Brown & \(\checkmark\) \\
\hline Uranium & \[
\begin{aligned}
& \text { Brownish } \\
& \text { red }
\end{aligned}
\] & Chocolate & & Brownish yellow \\
\hline Tungsten & & & & \\
\hline Titanium & Grass green with a tinge of brown & Redish brown
\(\qquad\) & Not precipitated & Grass green \\
\hline Columbium & Olive & Orange & & Chocolate \\
\hline Tantalium & & & & \\
\hline Cerium & & Yellowish & & Brown, be-
\begin{tabular}{l} 
coming \\
deep green
\end{tabular} \\
\hline
\end{tabular}

III,-Table, showing the Maximum Quantity of Oxygen takeis uf by different Substances.

SIMPLE COMBUSTIBLES.
```

100 Hydrogen unite with - - 597.7 Oxygen
100 Carbon - . . . - 257.
100 Azote - - . - . 236.
100 Muriatic acid - . - . 194.
100 Phosphorus - . . . 154.
100 Sulphur - - - - 71.2

```
metals.
100 Chrome combine with - - 200. Oxygen
100 Manganese - . . . 66.

100 Arsenic - - . . . 53.
100 Iron - - - - 45.
100 Tin - - . . . . 38.8

100 Antimony - - - 30.
100 Zinc
100 Copper
100 Lead
100 Tungsten
100 Mercury - - - - 17.6
100 Platina - - . . 15.
100 Silver - - - - 12.8
100 Bismuth - - . . 12.
100 Gold - . . . . 10.

No. V.
Table of Simple Affinity.*


\footnotetext{
* This table, it may be necessary to observe, does not express accurate-
} ly the comparctive affnities of bodies, but denotes merely the actual order of decomposition, which, as Berthollet has shown, may often be contrary to that of affinity, owing to the influence of various extraneous forces.
\(\dagger\) Vauquelin's table of the affinity of the metals for oxygen, according to the difficulty with which their oxides are decomposed by heat.

Table of Simple Siffinity-Continued.
\begin{tabular}{|c|c|c|c|}
\hline Strontites. & magnesia.
Acids. Oxali & Carbonic Prussic & Tartaric Citric Lactic Succinic \\
\hline Phosphoric & Phosphoric & & Acetic \\
\hline Oxalic & Sulphuric & SILE & Prussic \\
\hline Tartaric & Fluoric & & Carbonic \\
\hline Fluoric & Arsenic & Fluoric acid & Ammonia \\
\hline Nitric & Mucic & Potash & \\
\hline \multicolumn{4}{|l|}{Muriatic Succinic} \\
\hline \multicolumn{4}{|l|}{Succinic Ni} \\
\hline Acetic & Muriatic & & OXIDE OF MER- \\
\hline Arsenic & Tartaric & ox. of platina. & CURY. \\
\hline Boracic & Citric & - Gold.* & \\
\hline Carbonic & Malic ? & & Gallic acid \\
\hline Water & Lactic & Gallic acid & Muriatic \\
\hline & Benzoic & Muriatic & Oxalic \\
\hline & Acetic & Nitric & Succinic \\
\hline & Boracic & Sulphuric & Arsenic \\
\hline lime. & Sujphurous & Arsenic & Phosphoric \\
\hline & Nitrous & Fluoric & Sulphuric \\
\hline Acids. Oxalic & Carbonic & Tartaric & Mucic \\
\hline Sulphuric & Prussic & Phosphoric & Tartaric \\
\hline Tartaric & Sulphur & Oxalic & Citric \\
\hline Succinic & & Citric & Malic \\
\hline Phosphoric & - & Acetic & Sulphurous \\
\hline Mucic & & Succinic & Nitric \\
\hline Nitric & Alumine. & Prussic & Fluoric \\
\hline Muriatic & & Carbonic & Acetic \\
\hline Suberic & Acids.Sulphuric & Anımonia & Benzoic \\
\hline Fluoric & Nitric & & Boracic \\
\hline - Arsenic & Muriatic & & Prussic \\
\hline I.actic & Oxalic & & Carbonic \\
\hline Cituic & Arsenic & OXIDE OF SIL- & \\
\hline Malic & Fluoric & ver. & \\
\hline Senzoic & Tartaric & & \\
\hline Acetic & Succinic & Gallic acid & oxide of lead. \\
\hline Boracic & Mucic & Muriatic & \\
\hline Sulphurous & Citric & Oxalic & Gallic \\
\hline Nitrous & Phosphoric & Sulphuric & Sulphuric \\
\hline Carbonic & Lactic & Mucic & Mucic \\
\hline Prussic & Benzoic & Phosphoric & Oxalic \\
\hline Suiphur & Acetic & Sulphurous & Arsenic \\
\hline Phosphorus & Boracic & Nitric & Tartaric \\
\hline Water : & Sulphurous & Arsenic & Phosphoric \\
\hline Fixed oil & Nitrous & Fluoric & Muriatic \\
\hline
\end{tabular}
* Omitting the oxalic, citric, succinic, and carbonic, and adding sulpl uretted hydrogen after ammonia.

Table of simfle Affinity-Continxed.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{15}{*}{\begin{tabular}{l}
Sulphurous \\
Suberic \\
Nitric \\
Fluoric \\
Citric \\
Malic \\
Succinic \\
Lactic \\
Acetic \\
Benzoic \\
Boracic \\
Prussic \\
Carbonic \\
Fixed oils \\
Ammonia
\end{tabular}} & Muriatic & Arscnic & Tartaric \\
\hline & Oxalic & Phosphoric & Mucic \\
\hline & Sulphuric & Nitric & Phosphoric \\
\hline & Nitric & Succinic & Citric \\
\hline & Tartaric & Fluoric & Succinic \\
\hline & Phosphoric & Mucic & Fluoric \\
\hline & Fluoric & Citric & Arsenic \\
\hline & Succinic & Lactic & Lactic \\
\hline & Citric & Acetic & Acetic \\
\hline & Acetic & Boracic & Boracic \\
\hline & Prussic & Prussic & Prussic \\
\hline & Fixed alkalis & Ammonia & Fixed alkalis \\
\hline & Ammonia & & Ammonia \\
\hline & Fixed oils & & \\
\hline & Water & OXIDE Of zinc. & \\
\hline \multirow[t]{2}{*}{OXIDE OF COP-
PER.} & XIDE OF LRON. & Gallic Oxalic Sulphuric & \begin{tabular}{l}
SULPHURIC \\
AcID. \\
prussic.f
\end{tabular} \\
\hline & Gallic & Muriatic & Barytes \\
\hline Gallic & Oralic & Mucic & Strontites \\
\hline Oxalic & Tartaric & Nitric & Potash \\
\hline Tartaric & Camphoric & Tartaric & Soda \\
\hline Muriatic & Sulphuric & Phosphoric & Lime \\
\hline \multirow[t]{2}{*}{Sulpharic Mucic} & Mucic & Citric & Magnesia \\
\hline & Muriatic & Succinic & Ammonia \\
\hline Nitric & Nitric & Fluoric & Glucine \\
\hline Arsenic & Phosphoric & Arsenic & Yttria \\
\hline Phosphoric & Arsenic & Lactic & Alumine \\
\hline Succinic & Fluoric & Acetic & Zircon \\
\hline Fluoric & Succinic & Boracic & Metallic oxides \\
\hline Citric & Citric & Prussic & \\
\hline Lactic & Lactic & Carbonic & \\
\hline Acetic & Acctic & Fixed alkalis & SULPHUROUS \\
\hline Boracic & Boracic & Ammonia & ACID \\
\hline Prussic & Prussic & & succinic. \(\ddagger\) \\
\hline \multirow[t]{4}{*}{Carbonic Fixed alkalis Ammonia Fixed oils} & Carbonic & & Barytes \\
\hline & & MONY. & Lime \\
\hline & OXIDE OF TIN.* & Gallic & Soda \\
\hline & Gallic & Muriatic & Strontites \\
\hline \multirow[t]{2}{*}{OXIDE OF AR} & Muriatic & Benzoic & Magnesia \\
\hline & Sulphuric & Oxalic & Ammonia \\
\hline & Oxalic & Sulphuric & Glucine \\
\hline Gallic & Tartaric & Nitric & Alumine \\
\hline
\end{tabular}

\footnotetext{
* Bergman places the tartaric before the muriatic.
\(\dagger\) With the omission of all after ammonia.
\(\neq\) Ammonia should come before magnesia; and strontites, glucine, and . zircon, should be omitted.
}

\section*{Table of Simple Affinity-Continued.}


\footnotetext{
* Magnesia should stand above ammonia, and alumina and silicia should be omitted.
\(\dagger\) Ammonia should stand above magnesia.
\(\ddagger\) Silex should be omitted, and, instead of it, water and alcohol be insertad.
|| Except sile::
§ With the omission of strontites, metallic oxides, glucine, and zircon.
- Zircon after alumine.
}

\section*{POSTSCRIPT.}

The printing of this work having been often delayed \(b y\) my professional engagements, I am enabled to include in it a brief account of Mr. Davy's most recent discoveries. They are contained in a paper,* of which he has been so obliging as to send me a copy, and which will be published in the second part of the Philosophical Transactions for 1810.

According to the view, which bad been commonly taken of the nature of muriatic and oxy-muriatic acids, the former is a simple body, and the latter a compound of that body with oxygen. Mr. Davy, from his earlier experiments, was led to modify in some degree this conclusion; and to consider the muriatic acid as a compound of a certain base with water, and the oxy-muriatic acid as a compound of the same base with oxygen. More lately, however, he has been induced by the experiments of Gay Lussac and Thenard, as well as by some of his own, made expressly for the purpose, to take a very different view of the subject. Oxy-muriatic acid he now regards as a simple or undecompounded basis; and muriatic acid as a compound of that basis with hydrogen. The facts, which are the ground work of this inference, fall chiefly under two classes : Istly, Muriatic acid, it is alleged, can in no instance be procured from oxy-muriatic acid, without the presence either of hydrogen, or of some body capable of affording hydrogen. 2dly, When oxy-muriatic acid combines with metals or other oxidizable substances, it is contended, we have no proof, from an examination of the results, that any oxygen has been furnished to the combustible body.

Of the first class of facts the most singular is that charcoal, ignited to whiteness in oxy-muriatic acid, effects no change in it. This might be explained on either of two suppositions; viz. that oxy-muriatic contains no oxygen; or that the oxygen, which enters into its composition, is held by a stronger affinity than that with which charcoal attracts it. Now there are several facts which show that, under certain circumstances, the affinity of charcoal for

\footnotetext{
* Entitled "Researches on the Oxy-muriatic Acid, its Nature and Combinations ; and on the Elements of Muriatic Acid, with some Experiments on Sulphur and Phosphorus."
}
rol. II.
oxygen is surpassed even by that of hydrogen. The experiment, therefore, does not decisively prove, that no oxygen is present in oxy-muriatic acid. In a subsequent part of the paper, Mr. Davy states that no decomposition of oxy-muriatic acid can be effected by electricity, a fact certainly confirming the notion of its being a simple substance.

On investigating the nature of the compounds, formed by the oxy-muriatic acid and metals, Mr. Davy was led to examine, with particular attention, that which results from the action of ox- - -muriatic acid on tin. When these bodies are brought into contact, the whole of the gas is absorbed by the metal. On the commonly received theory, therefore, that the oxidation of a metal invariably precedes its solution, an oxide of tin might be looked for in the new compound ; but, by the most careful experiments, \(\mathbf{M} r\). Davy was not able to discover any.

Again, when oxy-muriatic acid is made to act on phosphorus, hhoshhorous or thosthoric acid ought to be generated; and as the latter acid is fixed in a strong heat, it might be expected to remain after igniting the product. Mr. Davy, however, found that the new compound, when saturated with ammonia, and afterwards made red-hot out of the contact of air, yielded no gaseous product whatsoever (a very singular circumstance when we consider the volatility of its ingredients.) He observed, also, that the residue manifested no traces of phosphoric acid, unless it had been previously heated in the atmosphere, and had undergone a sort of combustion.

If oxygen enter into the constitution of oxy-muriatic acid, it follows that water should be formed by.its action on ammonia; and this indeed has been commonly stated to be the fact. But Mr. Davy, on repeating the process with the view of deciding this point, was not able to discover that any water was generated.

In an experiment originally made by Mr. Cruickshank, oxymuriatic acid and hydrogen gases were found to unite after some time by simple admixture : and a condensible matter remained, which was nothing more than muriatic acid. This fact is equally well explained in two different ways; for we may either suppose that the hydrogen unites with oxygen furnished by the oxy-muriatic acid, and sets at liberty muriatic acid pre-existing in that compound; or else that the hydrogen unites with the oxy-muriatic acid, which in this view is a simple body, and that the two united form common muriatic acid. The latter explanation is the one which Mr. Davy prefers, chiefly because the presence of oxygen
in oxy-muriatic acid has not been demonstrated by other experiments.

When potassium is ignited in muriatic acid gas, hydrogen is evolved, and muriate of potash remains. But even this salt Mr. Davy is disposed to regard not as a compound of oxide of potassium (potash) with muriatic acid, but as a compound of metallic potassium with oxy-muriatic acid. In all cases, indeed, where muriatic acid gas is atted on by metals, he supposes that the oxy-muriatic acid is attracted fromhydrogen by the metal, and a real oxy-muriate generated.

The vivid combustion of inflammable bodies in oxy-muriatie acid gas Mr. Davy does not admit to be a valid objection to his theory. The evolution of heat and light he deems to be no proof of oxygenation, but to arise merely from that intensity of action, which attends various combinations where the fixation of oxygen has never been suspected.

The compounds termed kyter-oxymuriates, which have been considered, chiefly on the suggestion of Mr. Chenevix, as containing oxy-muriatic acid united with an additional dose of oxygen, are rather, according to Mr. Davy's theory, compounds of oxymuriatic acid with metallic oxides. Hyper-oxymuriate of potash, for example, is oxide of potassium saturated with oxymuriatic acid, or a triple compound of oxy-muriatic acid, potassium, and oxygen; while muriate of potash is metallic potassium saturated with oxy-muriatic acid.

In this view of the subject, oxy-muriatic acid performs the same functions as oxygen. With respect to its electrical habitudes, it may be arranged in the same class with that basis; and in all analyses of its compounds by galvanic electricity, oxy-muriatic acid is evolved at the positive and hydrogen at the negative surface. In strictness, it can scarcely be deemed an acid, but rather a sort of acidifying principle.

If these striking and ingenious speculations (for such they must at present be regarded) should be confirmed by future experimental researches, material changes will be required in the existing nomenclature of chemistry; and important modifications must be made in several parts of the received theory of the science.

Another subject, to which Mr. Davy has recently directed his attention, is the action of potassium on sulphur and sulphuretted hydrogen, and on phosphorus and phosphuretted hydrogen. If potassium and sulphur be made to act on each other in glass retorts, part of the potassium, he finds, is lost by its operation on the
glass. This furnishes one reason why less sulphuretted hydrogen gas was evolved in Mr. Davy's former experiments, from a given weight of potassium combined with sulphur, than might have been expected from the quantity of hydrogen evolved by the recent metal. On repeating the experiment, no proof was gained that the potassium had acquired oxygen from the sulphur. All that can be demonstrated is a combination of potassium with sulphur, in the proportion of three of the former to one of the latter, which burns into neutral sulphate of potash. Neither did it appear that by the action of potassium on phosphorus, any effect was produced beyond the formation of a phosphuret of potassium, consisting of about three parts of phosphorus to eight of the metal.

It is remarkable that the weights of the ultimate atoms of several compounds, deduced by Mr. Davy from his own experiments, do not differ very materially from those which had been inferred by Mr. Dalton from other data. This will appear from a comparison of the following numbers with those already stated at page 328 of this volume.
The weight of an ultimate atom of potash - - - 48.


\section*{NOTES,}

\section*{BY PROFESSOR SILLIMAN, OF YALE COLLEGE.}

\section*{Note 32, page 8. Natural History of Metals.}

Tae metals are not presented immediately to the hand of man, like the objects of the animal and vegetable kingdons, but, they are, for the most part, buried in darkness, in the bowels of the earth, where they are so much disguised, by combination and misture with other substances, that they often appear entirely unlike themselves. Hence they are acquired only by slow and painful toil, and by noxious processes, and dangerous operations; their properties and uses have been but slowly developed, and it is to be regretted, that they are the most usual instruments of human destruction, and, because they are more or less the representatives of all other kinds of property, they have been made the immediate motives, means and objects, of the most sordid passions and the most flagitious crimes.
The metals are occasionally found, in nature, in the metallic state, but, more generally, they are combined with other substances, and, in this state, they are called ores. A metal, in this condition, is said to be mineralized, and the substance with which it is combined, is called the mineralizer. The principal mineralizers are oxygen, sulphur, arsenic, the carbonic, sulphuric, muriatic, arsenic and phosphoric acids, and carbon. As far as our knowledge at present extends, all ores may be included under one or another of the following descriptions :
1. Native metals, and alloys of one metal with another.
2. Native metallic oxides ; or, compounds of the metals with oxygen.
3. Native metallic salts; or, compounds of the metallic oxides with acids.
4. Native sulphurets and carburets; or, compounds of the metals with sulphur or carbon.

Gold, silver, platina, mercury, copper, bismuth, antimony and arsenic are frequently found native; -iron more rarely, and a few other metals have been reported to be found occasionally native. The native alloys exist principally bteween gold and silver, gold and copper, and mercury and silver. Arsenic, however, is a very common mineralizer, and exists, more -r less, in a great proportion of the ores. Platina is always found in the metallic state ;-gold, most generally, and silver frequently.
The metallic oxides and sulphurets constitute by far the most extensive and important classes of ores. In the state of oxide the metals are brittle, "have an earthy appearance and exhibit different colours, but have no lustre. Iron, cobalt, copper, arsenic, bismuth, antimony, zinc, manganese, tin, lead and mercury exist in this condition." (Schmeisser ii. 14.)
Metals, combined with sulphur, are also brittle, but they frequently have the metallic lustre. The compounds of iron and sulphur are called pyrites;
the same name is applied to compounds of sulphur and iron, containing copper, or arsenic, and the first description is called ferruginous-the senv ond cupreous, and the third arsenical pyrites. \(\%\)

Heat produces in the sulphurets a sulphureous odour, and in those which contain arsenic, as many of the pyritical ores do, an odour of garlic is produced by friction, percussion and heat. Silver, iron, lead, copper, mevcury and antimony are often found combined with sulphur. (Ibid.)

The only metal whose combination with carbon is well understood is iron, in the substance called plumbago.

The compounds of acids with metallic oxides are more rare than most of the preceding states; they appear differently, and some of them look much more like earthy substances than ores.
1. Iron is found combined with the sulphuric, phosphoric and carbonic acids, \&c.
2. Copper with the sulphuric, carbonic, arsenic and muriatic acids, \&c.
3. Lead with the sulphuric, carbonic, arsenic, chromic, molybdic and muriatic acids, \&c.
4. Zinc with the sulphuric.
5. Antimony with the muriatic.
6. Silver with the sulphuric, murintic and arsenic acids.
7. Mercury with the sulphuric and muriatic acids.
8. Cobalt with the arsenic and sulphuric acids.
9. Manganese with the carbonic and phosphoric acids.

The ores constitute but a very small portion of this globe, at least of those parts of it which have been explored. They are never found in large extended masses, like those of granite, trap and limestone, but, usually, in cavities and veins, principally in the hardest rocks. These are often divided by fissures, running through them in various directions, the two sides of which frequently tally to each other as if they had been divided by some convulsion of the globe. It is in such fissures that the veins of metal are commonly found. They usually cross the strata at right angles, and, in most instances, are perpendicular or inclined to the horizon; rarely are they. horizontal. The veins do not consist entirely of orc; the greater portion of them is, for the most part, filled with some kind of stony substance different from the rock ; it is commonly denominated spar, because it has often a crystalline or plated structure. Carbonate of lime, or calcareous spar, fluor spar or fluate of lime, quartz, amorphous and crystallized, and sulphate of barytes, or, ponderous spar, are the most frequent, and the latter more so than perhaps any other. The miners call these things the matrix or gangue of the particular metal; sometimes the metal is dispersed among the gangue only in specks; at other times it prevails so as to occupy a considerable part, or nearly the whole of the vein. Although ores are sometimes found in horizontal beds, in plain countries, they are most abundant in mountainous and rugged regions. Granite and the other primitive rocks rarely contain ores, but gneiss and the schistose rocks contain them in abundance; limestone, quartz and barytic spars are well stored with them; they are not tbundant in whin, and serpentine very seldom affords them.

There are perhaps few subjects on which mankind are more credulous than
on that of the discovery of ores. Hence the numerous impositions practised on the ignorant and avaricious by artful and impudent knavery. It is now scarcely credible that implicit faith was once reposed in the virgula divinitoria, or divining rod as it was called, nor should we have expected that the British Encyclopedia would have more than countenanced a folly which the grood sense of mankind has long since discarded. Mr. Price, an English writer on the Cornish mines, has very gravely informed us that; "hazle rods cut in the winter do best," and that " apple tree suekers, rods from peach trees, currants, or the oak, will answer tolerably well."-The use of these rods was, that, when poised in a particular manner in the hand, they would be attracted toward the spot of earth containing an ore. Mr. Price says that if a person with a divining rod in his hand stand with one foot advanced and a guinea beneath it, and a half-penny beneath the other foot, the rod will be drawn towards the guinea, and that if the guinea be put into the place of the half-penny, the attraetions will be reversed. This art once formed a distinct profession, and the same impostors pretended to be affected with convulsions, swoonings, lethargy, \&c. when reposing on ground. beneath which metals lay concealed. It would hardly be proper to mention such ridiculous follies, were there not still some people in this country who have a strong leaning toward them. Much more confidence is reposed in certain indications almost equally fallacious, such as the dreary aspect of a mountain-the sterility and nakedness of a country-the blighted state of vegetation, imaginary exhalations from the ground, and many other similar things. But, when metallic grains and fragments are found dispersed among the sand of a plain, or in the bed of a river, it is reasonably coneluded that. they have been detached by rains from the hills, and washed down by the water ; when the springs of a country are contaminated with a metalline impregnation, there can be no doubt that ores are below. Above all, when a vein of metal appears at the surface, which not unfrequently happens on the steep side of a hill, a promontory, or the bank of a river, decisive evidence is obtained.

The fortunes of men ought not to be hazarded in mining speculations without all the certainty that the nature of the case will admit of, and this can frequently be afforded by boring, a simple and not very expensive operation, which is worth more than all the divinations and enchantments that have ever been practised.

\section*{mine and mining.}

After the existence of ore is ascertained to the satisfation of the adventurers, if the country be level, or nearly so, a pit similar to a well is sunk; it is called a shaft, and if the earth be not sufficiently compact, the sides of the shaft are supported by planks and timbers; timbers are placed horizontally also, at convenient distances, and, upon these, ladders are firmly fixed in a perpendicular position, and a plank or two laid at the foot of each for a landing place; as the shaft goes down deeper and deeper, other ladders are added, in a connected series, till the miners arrive at the ore. Having found it, they of course follow the vein ; this produces another excaration, at right angles with the shaft ; it is called an adit, level, or gallery. If the
mine be worked through a rock, there are, of course, natural walls, and a roof sufficiently firm; sometimes the walls of the vein are of rock, while the roof is crumbly, and it must then be supported firmly by planks and timber. As the only inducement to excavate the gallery arises from the width of the vein, the gallery varies extremely in diameter;-at one place, where the vein has failed, or become very small, it is merely a narrow pas* sage, where the miners can do nothing more than crawl through ;-at another, a man can walk erect with ease, and, at another, it becomes a wide and lofty chamber. Sometines the gallery is intersected by another vein running off at an angle; here a new gallery may be formed, and thus the work may be indefinitely extended. A shaft is often sunk from the gallery already formed, to meet a new one below, and thus these subterranean passages are made to communicate freely with one another, and with the surface of the ground. When the mine is situated in a hilly country, it becomes easy to discharge the water, merely by continuing the galleries out, to the side of a hill; but, in a level country, the water must be raised to the surface. For this purpose, as well as for raising the ore, letting down people and implements, and for other similar objects, all the powers of mechanism are occasionally employed.

The strength of men and of animals; mills, worked by wind or water, and, above all, the steam engine, which is in general use in England, are employed to accomplish the desired object. In the Dolgoath mine in Cornwall, a steam engine is employed to raise the water. The machine there employed works a rod composed of pieces of timber; it descends more than 1000 feet into the ground, and raises the water to a superior adit, where it runs off through the side of the hill. There is another cvil to which the miner is peculiarly exposed. Deadly gases, consisting chiefly of the carbonic acid gas, and some varieties of the hydrogen gases, occasionally suffocate him; and, when they are inflammable, which often happens in coal mines, they become mixed with the atmospherical oxygen ; when the min(r) descend with lamps and candles to their work, the mixture sometimes explodes and blows the adrenturers and their works into the air, or hurries them with fatal relocity along the narrow chambers of the mine. To prewat these evils, recourse is had to ventilation. When the mine is situatcd in the side of a hill, and the galleries are continued out to the side, a ventilation is, of course, established, because the mouth of the shaft and the outlet of the gallery are at different elevations; the air within the shaft is in winter warmer, and, in summer, colder than that above ground ; thus, the two columns of air, the one of which presses at the mouth of the gallery, and the other at the bottom of the shaft, are rarely in equilibrio, and therefore a current is established one way or the other. It is observed, that about the equinoxes, these columns sometimes are so nearly in equipoise, (becarse the air without and within the earth is then very nearly of the same temperature) that the miners perceive a stagnation, and it becomes necessary to kindle a fire in order to destroy the equilibrium. When circumstanees do not admit of a natural ventilation, as where shafts hare been sunk in a level country, it is accomplished by maintaining at the mouth of ane of the shafts a consiant fire, which discharges its heated air through a

Iong chimney, and thus the equilibrium of the othcrwise equiponderant: columns of the atmosphere is destroyed, and a double current of foul air up, and of good air down is maintained. No work can be done in the mines without artificial light, which enables the miner to see wherc the vein is richest in ore, and there he applics his hammers, crows, levers, pick axes, wedges, and other mechanical instruments to detach it from the rock. If, however, this be very hard, it is necessary to employ the force of gun powder ; indeed this is more generally necessary, and the explosions (from their happening prematurely, or from their driving fragments of the rock to a distance, and thus hitting those who imagined themselves out of danger) are not unfiequently fatal to the workmen. The great copper mine of Dolgoath, at Redruth, in Cornwall, is a fair example to illustrate most of the particulars mentioned in this sketch.

Much labour and expense are saved when the ore is so situated that direct access can be had to it by a lateral excavation in the side of a hill or mountain. Then it is nccessary only to penetrate into the ground in a horizontal direction till the ore is found, and thus the same passage, which serves as an entrance, affords also a drain for the water, a gallery for the people to go in and out, and a road for the conveyance of the ore, which is transported to day light on small hand sleds or waggons, drawn along the bottom of the adit; frequently, the miners are harnessed to these simple machincs, as they find, from experience, that they work with more ease in this way. It is not possible, however, to penetrate far into a mountain without ventilation. In pursuing the narrow passage of the gallery, the air becomes so much vitiated by the respiration of the workmen, and by the burning of their candles, that, ultimately, their lights begin to burn dimly, their breathing becomes laborious, and every thing announces imminent danger. To obviate this, either a shaft is sunk from a higher part of the hill to mcet the adit, or another gallery is made at a different elevation, and the two are connected in the interior of the mountain by a shaft, and thus a ventilation is produced upon the principles already cxplained. In this description of mines, all the expensive and troublesome machinery calculated to raise the ore and the water, and to let down people, implements, \&c. may be dlspensed with, and the business is wonderfully simplified.

Of this kind of mines, the ancient and celebrated ore at Castleton, in.Derbyshire, called the Owdin mine, is a fine example.

\section*{Metallurgy.}

As a preliminary to the great and expensive processes for extracting metals from their ores in the large way, it is necessary to perform the same thing on a small scale, for the purpose of forming a judgement as to the profit which may be expected from the mine, and, indeed, this step ought always to be taken previously to the expenditure of any great sums in the mechanical operations of mining, otherwise, great loss may be sustained. These operations are called docimasy or the docimastic art ; they constitute the assay, by which the quality and richness of the ore is judged of. The habit of examining minerals will soon enable a person, from the external appearance of an ore, to form a tolerably eorrect judgement of its nature and value,

The blow-pipe will proveran important aid to his judgement, for, by means of this, assisted by proper fluxes, a judgement can usually be formed, in a few minutes, as to the kind of ore, although not always as to the proportion of metal. A piece of charcoal or a spoon of platina is commonly used for a support to the bit of ore under examination, and various additions of bo-rax-sub carbonate of soda-black or white flux, microcosmic salt, \&c. are made accordiug to the object in view. The blow-pipe is admirably adapted to the almost instantaneous production of a high and very manageable heat. As examples of its use, it may be mentioned that if a minute portion of the ore of cobalt be fused with borax, a fine blue button will be formed; if the proportion of salt has been too small, the button will appear almost black, but will become blue, on being diluted with more borax and fused over again. If borax be fused with oxide of manganese, a purple button will be formed; if this button be completely surrounded by the flame of the blow-pipe, and urged with a heat continued, for a few minutes, the globule will emit bubbles of gas and will become colourless; this is owing to the escape of oxygen gas which brings the manganese to the state of white oxide when it loses its. colour. If this colourless globule be heated again with the exterior flame of the blow-pipe, while the air has free contact with the globule, the purple colour will return; then by alternately repeating the first and second experiment upon it, the colour may be discharged and renewed at pleasure, Should these circumstances occur, the operator would, with good reason, conclude, that the first substance was cobalt and the second manganese. For minute instructions as to the use of the blow-pipe, reference may be had to Bergman's chemistry.

For practical purposes, the examination of ores is, however, commonly made in the assay furnace. Good, middling and poor specimens of the ore are selected, that the result may be neither too flattering nor too discouraging. The pieces selected should be as free from the matrix as possible, and the stony matter may be still farther separated by breaking it with a liammer.

The ore is then pounded and the stony matters farther picked out; and advantage is taken of the difference in spccific gravity between the ore and the matrix; they are agitated in water, or a stream is suffered to pass over them, when the metallic parts will sink and the stony fragments are washed away. A convenient quantity is then taken, varying from 100 grains to \(\mathbf{1 0 0}\) pounds, according to the nature and value of the ore, and the degree of precision required; this is roasted, as it is called, that is, it is exposed, for a considerable time, to a low red heat, applied in shallow vessels. The object of this operation is to expel any sulphur or arsenic, which the mineral may contain; and which it is, may be inferred from the smell, which is sulphu: reous in the one case, and alliaceous in the other. During this operation the metal is almays converted into an oxide, and the object of the next process. is to bring it to the state of a metal, by mixing it with substances which will at once promote its fusion, and abstract its oxygen. These substances are called fluxes; they are numerous and various, and different fluxes are employed in reducing different ores, but they usually contain carbon, as one ingredient, and some saline or alkaline substance ; the former to abstract
oxygen and the latter to promote fusion. The most common is the black flux, formed from two parts of tartar and I of nitre, mixed in a red hot crucible; this is well adapted to the ores of lead, copper and antimony. Another flux, well adapted to iron ores, is composed of 20 parts of calcined borax, 10 of nitre and 2 of slacked lime, and these proportions correspond to 10 grains of the ore. Pounded glass 16 parts, borat 2, and powder of charcoal 1, answer the same purpose. Arsenic and nitre, in equal parts, form also a very active flux. With some of these, or other fluxes, a certain quantity of the roasted ore is heated in a crucible, and, at the end of the operation, the metal is found reduced, at the bottom of the crucible, forming a metallic button, whose weight, compared with that of the ore, gives the proportion of metal with sufficient accuracy to enable those concerned to decide on the expediency of prosecuting the adventure: This is however but a coarse analysis, if the object be to ascertain with correctness, the true chemical composition of the ore. But, in an economical point of view, it is, perhaps, even preferable to the more accurate methods, because it is of importance that the assay should, as much possible, resemble the metallurgic processes in the large way, which must, necessarily, be performed with cheap materials and in a coarse mauner, because the expense would absorb the profits were the costly re-agents of scientific chemistry introduced into the smelting and refining furnaces.

This method of examination is via sicca, in the dry way, as it used to be called. But, if we would ascertain the true composition of the ore, so as to give the specimen its correct place in a system of scientific mineralogy, iwe must have recourse to the analysis, via humida, or, in the moist way, that is, not by fire, but by acids, alkalis and other re-agents. This method is now universally preferred by expert chemists, where science and not profit, is the object. Its processes however are tedious and require the utmost skill and patience in the analyst, and absolute purity in his re-agents. An account of them involves details which would be misplaced among these general remarks, and more properly belong to the history of the particular metals.

After what has been said as to the manner of assaying ores, it will not be necessary to be very minute upon the operations of metallurgy in the large way, since the principles are almost identical, and the variations in the processes are produced chiefly by a reference to economy and facility of operation. The more general operations to which the ore is subjected, are sorting, stamping, washing, reducing and refining.

The sorting is merely the picking over of the ore, to free it from the matrix and other foreign bodies. In common cases it is entrusted to women and children, but if there be several ores intermixed, which it is necessary to separate, especially if any of them be very valuable, as gold or silver, the sorting is then performed by skilful men, superintended by a master miner, or captain of the mines.

The object of the stamping is to reduce the ore to moderately small fragments, in order to facilitate the farther separation of the matrix. For this purpose, it is pounded in stamping mills. They consist of perpendicular' cylindrical picces of wood, shod at the foot with iron, and worked by wind
or water, or some other adequate moving power, which causes these great pestles to play up and down in huge stone troughs or mortars, containing the ore, while, in many instances, a stream of water, passing through the trough, washes away the lighter stony parts. The ore is always washed or dressed for the purpose of separating the stony fragments, and there are many ingenious means of doing this, as in the bed of a rivulet, on an artificial inclined plain, over which water is made to pass; in tubs, boxes, \&c. When there are grains, or minute fragments of very valuable metal, as for instance gold, dispersed among sand, the washing is performed on inclined plains, covered with cloth, which catches the angular and small pieces, that would otherwise be washed away. When the stony matrix is very hard, it is sometimes rendered friable by beating it and throwing it, while very hot, into water, which causes it to crack.

The next object is the roasting. This is commonly performed in the open air, the ore being mixed with heaps of wood and exposed to a gentle real heat, a good while continued. Sometimes this operation is performed among charcoal, in furnaces of a particular form, contrived to save the arsenie or the sulphur as the case may be; they rise, in sublimation, and are condensed in some proper receptacle. Nitre is sometimes used to burn out the sulphur, but is too expensive for common use. Some ores require several repetitions of the process of roasting before they are cleared of their sulphur and arsenic.

Renuction is the next and most important operation of the whole, to which the others may be regarded as merely preparatory. This is done in furnaces which vary exceedingly in size and form, according to the particular nature of the metal and the practice of different countries.

The great object is now to separate the oxygen, that the metal may appear in its proper character. For this purpose the ore is mixed with large quantities of fuel, commonly charcoal or oak, and a strong beat is raised; the remaining sulphur and assenic are expelled, and the oxygen, combining with the red lot carbon, flies away in the form of carbonic acid gas and gaseous oxide of carbon. Appropriate fluxes are alsoadded to fuse any earthy matters which may remain, and sometimes lime and alkali, and even some of the less valuable metals are added to absorb the sulphur more completely. At length the metal, freed from most of its impurities, subsides to the bottom of the furnace, and the earthy and sulphurated mass floats as a scum or slag. This is sometimes drawn off at a convenient tap hole, or by rakes, or blown aside by the blast of bellows. The melted metal itself is drawn off by a tap hole at the bottom of the furnace, or, when the quantity is small, it is dipped out with ladles. The slag or scum is not always rejected. Sometimes it is rich in some other metal, which, during the operation, has been oxidized and scorified, while that which was the principal object of the process, on account of its differcnt nature, has not suffered the same change. The slag is therefore occasionally, and, in some particular cases, usually worked over by itself, and frequently yields no contemptible product. Sometimes it is is very valuable of itself, as in the extraction of silver from lead ores, where the oxidized lead forms a slag which is the foundation of the manufacturers of litharge and red lead:

When volatile metals are to be obtained from their ores, it bccomes necessary to employ \(x\) distilling apparatus, as retorts of earth or iron ; mercury and zinc are metals of this description.

The metals which have been obtained by the processes of reduction, although usually sufficiently pure for commercial purposes, arc rarely so in a chemical sense ; they arc occasionally contaminated with some of the earthy mattcrs with which the ore has becn treated, and they are often alloyed with other metals, some of which may be more valuable than the whole mass, or which impair the proper qualities of the metal.

Last of all then comes the process of Refining, the object of which is to obtain the metal absolutely pure, or at least sufficiently so to answer all the purposes for which it is wanted. As, however, the processes for refining differ exceedingly, in the cases of the different metals, it is scarcely possible to give any general account of the subject. Such details belong more properly to the history of the particular metals.

The number of the metals is now nearly thirty. Most of them are of modern discovery. The ancients were acquainted with only seven, viz. gold, silver, mercury, iron, lead, tin and copper.

\section*{Note 33, page 35. Silver.}

The remark in the text, that silver, when dissolved in nitric acid exhibits a green colour if impure, is strictly applicable to the alloy of silver with copper, such as exists in coin and in trinkets, which, when dissolved in nitric acid, tinge the solution green, but silver might be impure from a combination with various other substances, without giving, on that account, a green solution. It often happens also during the action of nitric acid on metals, that a temporary green solution is obtained, owing to the generation of nitrous gas, and its transient combination with the solution; if the green colour is owing to this cause, it will disappear if the solution be hcated.

\section*{Note 34, page 39. Fulminating Silver.}

Pulverize 100 grains of the common lunar caustic of the shops (nitrate of silver ;) add to it one ounce of alcohol and one ounce of nitric acid. If these agents are good, therc will be a violent action. But this will not happen with these fluids as they are commonly found, and gencrally it will be necessary to apply a very moderate heat, which must be removed as soon as the action comes on. Very soon a thick white precipitate will appear; distilled water may then be thrown on to check the action if becoming too violent; the precipitatc must be washed in distilled water, aftcr having been separated by the filter, or by decantation, and will fulminate powerfully by heat or friction. A convenient way of exploding it is to place a grain or two of it on the bladc of a knife, and to hold it over a candleThis process I believc was substantially suggested by Descotils, and the fulminating silver produced in this manner is, compared with that of Berthollct, a harmless preparation. Still, it is sufficiently critical and violent to render great carc neccssary in its preparation. Having been, for scveral years, accustomed to prepare it, and having never met with any accident, I had probably come, by degrees, to undervalue the danger, and, in conse-
quence incurred a serious injury, which had well nigh deprived me of my eyes; the mention of the manner in which it occurred, may perhaps save some person from a similar accident. The usual mixture of lunar caustic, alcohol and nitric acid, being made in a porcelain dish, I ventured to take it up and stir it with a glass rod, to accelerate the action, which was rather languid, and as no mischief happened from this step, which I had never ventured on before, I stirred it again, and, as some part of the nitrate adhered to the dish, a little pressure was used to detach it, when the whole exploded into my eyes with great violence, and threw me into immediate blindness, both from the mechanical force of the explosion, and from the corrosive action of the chemical agents. After some weeks of suffering and darkness, my sight was gradually restored, although the strength of the organs las never been fully regained. I have prepared the fulminating silver repeatedly since, without any accident. (For a more particular account, see Bruce's Journal, Vol. I. page 163.)

\section*{Note 35, page 61. Sulphuret of Iron.}

There can be no doubt that the author perfectly understood that the phe. nomenon of the extrication of latent caloric, attended by light, during the combination of sulphur and iron, is not, as he has termed it, a combustion. Were it a real combustion, the iron would be found oxidized, and the sulphur acidified. But neither of these facts is so. It is well known that the compound decomposes water by the aid of an acid, and sulphur rises dis-" solved in the hydrogen, both of which facts are inconsistent with a previous combustion. Whatever uncertainty there may be (and it is acknowledged there is much) in the use of the word combustion, it must, no doubt, in every case, include a combination of oxygen with the body burned, and an increase of weight in the sum of the products, neither of which facts exists in this case.

\section*{Note 36, page 65.}
meteonic stones.
The falling of stones from the atmosphere, is now universally admitted, not only by philosophical men, but, such a mass of evidence has been accumulated on the subject, that both the knowledge and belief of these events have become general.

The phenomenon is usually connected with the appearance of luminous incteors, or fire balls. Their apparent diameter is sometimes as iarge as the moon ;* "from the main body, frequently extends a flame or train. streams and sparkles of fire seem to shoot out on every side. Just before their disappearance, there is a violent explosion, by which pieces often appear to be detached, and thrown to the ground."
" When the stones have fallen in the day time, the meteor has not always been observed; probably, because its light was not sufficiently strong to draw the attention of persons abroad, to that part of the heavens, in which it was moving. But, even in this case, the same kind of report has

\footnotetext{
* See Professor Day's view of theories on this subject. (Memoirs of Connecticut Academy Tol, J. Part 1. page 164.)
}
been heard, as that which usually follows the explosion of a meteor. In many instances, the luminous body has been seen to come forward to the zenith, and apparently to burst; and, immediately after, the stones have fallen, with a whizzing noise, to the ground."

Meteors of this kind are seen, in some parts of the world, almost every year, and the same meteor is often seen over a great extent of country; in some instances, a hundred miles in breadth, and five hundied in length. (Day's view.)
Their perpendicular altitude during the time in which they are visible is calculated to be from 20 to 100 miles; and their diameter is, in some cases, estimated to be at least half a mile.

Their velocity cannot be less than 300 miles in a minute.
It has not been ascertained that these meteors do, in every instance, project stones to the ground; but stones have been observed to descend in so many instances immediately after the explosion of meteors, as sufficiently to establish the point that the stones do proceed from the meteor, and it may be presumed that, in numerous instances, they have fallen into the water, or other inaccessible places, or been effectually concealed, by being buried in the ground, in consequence of the violence of their descent.

The number of well authenticated instances in which stones have fallen from the atmosphere is now so great, that instead of attempting to enumerate them all, we shall make a selection of the most important only.

There have been traditionary and historical accounts of the falling of bodies from the heavens, from very remote antiquity. Sometimes they were regarded as objects of idolatrous worship; such was the ro doonerous (or that which fell down from Jupiter) of the Ephesians.

Livy mentions a shower of stones at Rome, under Tullus Hostilius, and a similar event is recorded to have happened there under the Consuls C. Martius and M. Torquatus. Pliny mentions a shower of iron in Lucania, the year before the defeat of Crassus, and that a very large stone fell in Thrace, in the 78 th Olympiad, and three large stones are asserted to have fallen in the same country, about 452 years before Christ.* These and other similar assertions in ancient history uere uniformly regarded, by the moderns, as instances of falsehood, or of excessive credulity and superstition; but they are now treated with more respect, and little doubt remains in the minds of men of science, that stones have fallen in every age of the world,

On the 7 th of June, 1492, a large stone, weighing 260 pounds, fell at Ensisheim, in Upper Alsace, in France; it was preserved, till within a few years past, in a church, and was regarded as a sacred object. It fell in a storm, when the heavens appeared to be on fire, and after a loud report like a clap of thunder.

About 120 stones, among which was one of 120 and another of 60 pounds weight, fell near Padua, in the year 1510.

In 1627, the great astronomer Gassendi saw a burning stone of 59 pounds fall on Mount Vaiser, near the city of Nice, in France.

\footnotetext{
* Many of the facts stated in this abstract are taken from a table drawn up by Mr. Izara, and which may be found in the Phil. Mag; XV. 182, and Thomson's Chemistry, second edition, VolIII. page 419.
}

In 1706, a stone of 72 pounds fell, near Sarissa, in Macedonia.
In 1750, a stony mass fell at Niort, in Normandy.
In July, 1753, there was a shower of stones at Plann, near Tabor, in Bohemia ; and, in September, two stones, weighing 20 pounds, fell at Siponas, in Bresse ; and still another instance occurred in the same year, in the Eichstadt country, in Germany. A labourer at a brick kiln, when the ground was covered with snow, saw a body fall immediately after a violent report like thunder. He ran to the spot, but the stone still retained so much leat, that it could not be handled. It was about six inches in diamcter.

In 1762, two stones, of 200 and 300 pounds, fell near Verona.
"On the 13th of September, 1768, a tempestuous cloud was seen near the castle of Suce, in Main. From this was heard an explosion like thunder ; but, without the appearance of lightning, and, directly after, a remarkable whizzing noise in the air. A number of travellers, looking up, saw an opake body descend in a curve line, and fall at a distance from them. They all ran to the place, and found a kind of stone half buried in the ground. and too hot to be touched." (Professor Day's Discourse.)
In the same year a stone fell at Aire, in Artois, and another at Le Cotentin.
A shower of stones fell at Barboutan, near Roquefort, in July 1789.
July 24,1790 , there was an extensive shower of stones in the environs of Agen.*

June 16, 1794, about 7 o'clock, P. M. at Siemna, in Italy, a tremendous cloud came from the north, sending forth sparks like a rocket, burning, and smoking like a furnace, producing violent explosions, and casting down stones to the ground. The cloud was very high. The stones, which were about twelve in number, fell at the feet of several persons.
December 13, 1795, near the Wold Cottage, in Yorkshire, England, unusual noises, like distant reports of pistols or guns, and also a whizzing, were heard in the air; there was no thunder or lightning. A labourer saw a body descend and strike the ground ; several persons went immediately to the spot, and found an extraordinary stone, weighing 56 pounds, buried 21 inches in the earth. It was warm, smoked, and smelt strongly of sulphur.

February 19, 1796, a stone of 10 pounds fell in Portugal.
March 12, 1798, one of 20 pounds fell at Sales, near Ville Franche, and, on the 17 th of the same month and year, another, of the same weight, at Salé, Department of the Rhone.

December 19, (same year,) about 8 o'clock, in a clear serene evening, a large fire ball was seen at Benares, in Bengal ; it was attenced by a loud noise like thunder, or a discharge of musquetry, and a shower of stones fell in a neighbouring field, and buried themselves about 6 inches deep.

April 26, 1802, about 1 o'clock, P. M. near L'Aigle, in Normandy, a very brilliant fiery globe was seen to move very rapidly through the atmosphere. Immediately after, a violent explosion, which lasted five or six

\footnotetext{
* A stone is preserved in the museum of Bordeaux, which, in 1789 or 1790 , fell through the roof of a cottage, and killed a herdsman and some cattle.
}
minutes, was heard at the distance of 30 leagucs, in every direction from L'Aigle. The sky was serene and calm, and there were only a few light clouds. A shower of stones fell in various parts of a district 7 miles in length, and 2 or 3 in breadth; the largest stone weighed 17 pounds, and the whole number was thought to be two or three thousand. One of them (presented by Col. Gibbs,) is preserved in the cabinet of Yale College.

One of the most remarkable occurrences of the kind on record liappened. at Weston, in Connecticut, on the 14th of December, 1807. Just after the dawn, a luminous meteor, or fire ball, apparently one half or two thirds as large as the moon, rose from the horizon in the north, and proceeded with great velocity, and a waving motion, nearly to the zenith ; it was distinctly visible, through the clouds which partly covered the sky, appearing like the sun in a mist, and, when it passed the spots of clear sky, it flashed, with a vivid light, on the beholders, sparkled like a fire brand carried rapidly against the wind, discovered a waving conical train or tail of paler light ; and, at length, with three loud and distinct explosions, like those of cannon, with as many leaps, and a rapid succession of fainter reports, like those of musketry, and a decay of light somewhat gradual, disappeared. This meteor was seen from Vermont to the city of New-York, and over an extent of two or three hundred miles from New-Jersey, to Salem in Massachusetts. Masses of stone were projected from it, at each of the three principal explosions; they were scattered over an extent of ten miles in length, and three or four in breadth. One mass fell within a few yards of a man who was standing at his door ; it was dashed to pieces on a rock; a piece as large as a goose egg remained unbroken, and was warm half an hour after the fall. A stone of 35 pounds fell in a door yard within a few feet of the house ; it buried itself completely in the ground, at the depth of two feet. Two other stones, one of about 8 or 10 pounds, and the other of 13 pounds, fell in the fields near the same house. Two miles south, two other stones fell, one at the foot of Tashowa hill, and the other upon it; the former weighed about 20 pounds, and the latter \(361-2\) pounds; they made deep holes in the ground. At the last explosion, a mass of stone was projected, which must have weighed at least 200 pounds; it descended with a roaring noise, and a visible eurve of light; struck a rock with a great concussion, dashed it, and was itself dashed in pieces, tearing a hole in the ground, on to which it glanced, of 5 feet long, 3 feet deep, and \(4 \mathbf{1}-2\) wide. In all the instances there was a whizzing or roaring noise in the air, when the stones clescended, and an evident concussion of the ground, when they struck. All the most important facts were witnessed by numbers of people, who never before heard of the falling of stones from the atmosphere.

Since this event, a large stone of between one and two hundred pounds weight has fallen in Russia, and, on the whole, there is much reason to believe that similar events occur almost every year, and probably have occurred from the remotest ages.

There is such a wonderful similarity in the appearance and composition of these stones, that they are completely different from any other, and yet so similar to one another, that they are readily recognized by the eye of
even a careless observer. Those which have fallen in the remotest countries, in the East Indies, in Europe, and America, are almost precisely alike in their external appearance, and chemical constitution.

Where they have not been too much broken to admit of its being observed, they are covered externally with a black crust, rough like shagreen, and proceeding, in all probability, from the effects of heat, in producing an oxygenizement and vitrification of the metallic and earthy substances. In their form, they are irregular, but they often exhibit spherical and commonly curvilinear figures. When they first fall, they often smell of sulphur, and are found to be hot if immediately examined. When broken, four distinct sorts or forms of substances may be discovered in them, either by the naked eye, or by the microscope.
1. Globular and spherical bodies, of a dark brown, or gray colour, hard enough to scratch glass, and to give a few faint sparks with steel; easily breaking under the hammer, and of a compact texture. They are of every size, from that of a grain of sand, to that of a pea. They lie imbedded in the mass of stone which appears generally of an ash gray, or light slate colour.
2. There are numerous and often highly brilliant points of pyrites of a redish yellow colour, very friable, and, when powdered, appearing black.
3. Portions of iron in the metallic state, dispersed promiscuously, like the pyrites, through the stone, and varying in size, from mere points to the magnitude of an inch or more.
4. The basis of the whole stone, that which connects all the other substances, and from which they may be detached by the point of a knife, is a granular earthy matter of an ash-gray colour, often inclining to slate, easily pulverized by the hammer and pestle, and, when in small pieces, without much difficulty between the fingers. There is, of course, a considerable variety in the distribution and proportion of the constituent substance, in the earthy cement, and, when it has been wet, spots of iron rust often appear upon the surfice. The specific gravity varies from 3.352 to 4.281 .

In the stones which fell at Weston, there was a considerable variety in the appearance of the earthy cement; some parts of it were light coloured, almost white, and of regular forms, as if those parts had once been a crystallized substance. In the composition of these stones there is such a surprising coincidence, as, in connection with their physical characters, and the phenomena which attend their appearance, must render it in the high-: est degree probable that they have a similar origin. According to Mr. Howard, a stone, which fell at Benares, consisted, in its different parts, of the following ingredients:

The pyrites contained, \(\left\{\begin{array}{l}2.0 \text { sulphur, } \\ 10.5 \text { iron, } \\ 1.0 \text { nickel, } \\ 2.0 \text { earths, and foreign bodies. }\end{array}\right.\)
15,5

The spherical bodies, \(\left\{\begin{array}{l}50.0 \text { silex, } \\ 15.0 \text { magnesia, } \\ 34.0 \text { oxide of iron, } \\ 2.5 \text { oxide of nickel. }\end{array}\right.\)
107.5

The earthy cement, \(\left\{\begin{array}{l}48.0 \text { silex, } \\ 18.0 \text { magnesia, } \\ 34.0 \text { oxide of iron, } \\ 2.5 \text { oxide of nickel. }\end{array}\right.\)
The stone of Yorkshire, when deprived as much as possible of metallic masses, gave Mr. Howard the following proportions in 150 grains :
\[
\begin{aligned}
& 75 \text { silex, } \\
& 37 \text { magnesia, } \\
& 48 \text { oxide of iron, } \\
& 2 \text { oxide of nickel. }
\end{aligned}
\]

162
The increase of weight was occasioned by the addition of oxygen to the metals.

The stones of L'Aigle yielded to Vauquelin and Fourcroy:
54 silex, 36 oxide of iron,
9 magnesia;
3 oxide of nickel,
2 sulphur,
1 lime.
105
The stone of Ensisheim gave the same analysts :
56.0 silex,
30.0 oxide of iron,
12.0 magnesia,
2.4 nickel,
3.5 sulphur,
1.4 lime.
105.3

The stones which fell at Weston, in 1807, gave, according to my analysis, 51.5 silex,
38. oxide of iron,
13. magnesia,
1.5 oxide of nickel,
1. sulphur.

105
Thus we see that the stones consist, invariably, of silex, iron, magnesia, nickel, and sulphur ; the silex constitutes generally about one half;-the
iron from a quarter to a third, and sometimes more ; the magnesia from a tenth to a sixth, and that the sulphur and nickel are in very small proportion.

The lime mentioned in two of the analyses is probably accidental, and the existence of chrome has been asserted by Laugier, but this has not been confirmed by other chemists.

As to the origin of these bodies, the subject is involved in such obscurity that no satisfactory conjecture, not to say hypothesis or theory, has been as yet advanced. There is, however, some difference in the degrees of improbability, attached to them respectively. All that deserve any attention may be included under the following heads :
1. The meteoric stones are formed in the atmosphere.
2. They are thrown from the volcanoes of this earth.
3. They are ejected from those of the moon.
4. They are thrown from terrestrial comets.

The mere existence of so many hypotheses is sufficient to prove, that we have no real knowledge on the subject. A few remarks on each of these suppositions will suffice to show that it is much more easy to raise objections than to substitute a satisfactory explanation.
1. As to the atmospheric formation of these bodies. Of the ingredients found in these stones, sulphur is the only one ever known to be in the state of vapour, and the proportion of this found in the various meteoric stones that have been analysed, is extremely small. Silex and magnesia are not only not volatilizable, but they are nearly infusible; iron and nickel require the most violent degrees of lieat to become fluid, and probably can never have more than a momentary existence in the state of vapour, even in the most powerful furnaces. How is it possible then that these substances should get into the atmosphere in the state of vapour or gas, and, if possible, why have they never been found in the air when it has been analysed?

Since the discovery of Mr. Davy that several of the earths have very combustible metallic bases, he has suggested that these bases may come, into the atmosphere in a metallic state, and there take fire; but, if the decomposition of silex had been satisfactorily effected, which it has not, still this explanation would be embarrassed with difficulties which must attend the theory of the atmospheric formation of the meteoric stones, even allowing it possible for the materials of which they are composed to exist in the air, in the state of vapour or gas.

Should they combine in the air, is it credible that they would rush from great distanc:s to one point, and there form a large solid body; would they not rather be precipitated in small masses or flakes like snow or hail? Hail is never precipitated in masses weighing hundreds of pounds; on the contrary, hail stones do not often exceed a few ounces in weight, and we have every reason to suppose that the region in which they are formed is often filled with aqueous vapcur, where corpuscular attraction, could it ever exert such an extensive agency upon aeriform particles would produce a great aggregation of matter. These difficulties are much increased, when we consider that some of the meteors from which the stones hare
descended, have been hundreds and somctimes thousands of feet in circumference; this is admitted by the best astronomers and philosophers, and is capable of being satisfactorily shown from deductions drawn from their apparent diameter; and the timc that has elapsed between the extinction of the luminary at the explosion, and the arrival of the sound to the car of the observer.

But, even waving all these difficulties, how could thesc meteoric bodics acquire their prodigious horizontal vclocity? If formed in the air, they would descend rapidly in lines perpendicular to the horizon; but their motion is nearly horizontal, and it could not be communicated by the air ; for, " the progress of the most violent wind is not more than two or three miles in a minute-but a meteor moves several hundred-the velocity of sound is less than 1200 feet in a second, that of a meteor morc than 20,000 -the greatest force of gunpowder will throw a cannon ball but a very few miles, whilc a meteor is often seen to move several hundred." Other objections might be urged against this theory, but these are sufficient to prove that it is untenable.
2. Their origin from terrestrial volcanoes is still more improbable. The composition and appearancc of the stones is different from that of any known volcanic substances; the stones have fallen hundreds and even thousands of miles from volcanoes; distances to which it is impossible that they should be conveyed, by any force that can bc exerted at the surface of the earth, and when it is considered that the stones which have come down to us are merely minute portions, torn off from the great meteoric bodies, which have continued to move on after the rupture, and had they fallen, would have been of sufficient size in some instances, to have filled the crar ters of the largest volcanoes, this theory must be regarded as inadmissible, and, indeed, at the present time, I believe it has no advocates.

We are not assuming one theory to oppose another, for, luminous meteors, which have apparently exploded, and been extinguished, at the moment when atmospheric stones have fallen, have appeared in so large a proportion of the instances that are best attested, and most minutely described, that, notwithstanding some cascs have occurred where the stones have apparently proceeded from burning clouds, and no fiery globe has been observed, still these appearances were probably the effect of optical illusion, or of the presence of the sun's light, and we are sufficiently authorised to conclude that atmospheric stones proceed from luminous meteors passing rapidly through the air, and no theory can be satisfactory which does not account for both.
3. Their ejection from lunar volcanoes, although supported by one of the most distinguished of the French philosophers, and countenanced probably by a majority of the men of science in Europe, appears to be hardly more tenable than the two preceding theories. It is admitted to be possible, that if a body were thrown from the moon with a force of about ten thousand feet in a second, it might pass the point of equal attraction, which is about twenty-four thousand miles from the moon's centre, and, then, if the earth and moon were relatively at rest, it would come in a right line to the earth's surface; but, as the moon and earth are both
moving forward in thcir respective orbits, the path described by a body projected from the moon would be a curve, the result of the composition of the motion of the moon in her orbit, the projectile force, and the power of gravitation, and the body would therefore probably revolve around the earth; if by any means pieces were detached from it, they would fall to the earth, and thus the theory appears to be possible, if we take into view only those insignificant portions of the meteoric bodies which come to the earth. Philosophers seem to have employed themselves principally in accounting fo these, without taking into consideration that they are mere atoms of the bodies from which they have come. The body of a meteor is a firm compact substance, for no other could preserve the correct globular form in moving so rapidly through the atmosphere ; and their light is usually well defined, so that hundreds and thousands of people who have seen them at once; give substantially the same account as to their apparent magnitude ; hence therc is good reason to conclude, that the estimates which have been made of their magnitudes have not been much overrated. Dr. Herschell estimates the altitude of the lunar mountains as being generally not more than half a mile; now is it credible, that bodies whose diameter is from two or three hundred fect to half a mile, should be projected from lunar volcanoes, and with such force as to go beyond the common centre of attraction, and arrive in the atmosphere of the earth? Indeed, if it may be permitted seriously to combat so extravagant a supposition, would not the re-action upon the moon itself produce a violent explosion of her own sphere, as a gan is burst by an over charge. We do not know the composition of the moon, and it may, for ought we know, be uniformly composed of silex, iron, magnesia, sulphur, and nickel, but this is in the highest degree improbable ; yet as the meteoric stones are all of similar composition, the theory implies this, while we know that the lavas and other volcanic matters of our own earth are composed of the most various ingredients, and arc often very dissimilar from each other.

Probably, not a year elapses without a meteor's being seen in some part of the world, and, had they been of lunar origin, no small part-of that satellite would, erc this, have been shot off in meteors.
4. Their origin from terrestrial comets, is the only one of the theories which remains to bc considered. That the earth may be attended by a system of inferior satellites corresponding to the solar comets, has been frcquently suggested by philosophers; but we are indebted to the Rev. Thomas Clap, formerly president of Yalc College, for an elaborate considcration, and a minute application of it to the explanation of the phenome \({ }_{r}\) na of meteors. This gentleman left behind him a paper containing "Conjectures on the nature and motion of Meteors." It was considered by its author as an unfinished treatise, but it was published some years after his docease, and although it does not appear that the learned author was acquainted with the falling of stones from the atmosphere, (for this subject had not then attracted the aitention of philosoplers,) this circumstance, iustead of invalidating his thecry, would have brought a great accession of streygth to its supiort.

President Clap had it in view mercly to account for the fire balls usually denominated meteors.

The explanation was founded upon an analogy drawn from the solar comets-particularly, from the eccentricity of their orbits, their conscquent near approach to the sun in their perilhelion, thcir prodigious distance at their aphelion, and the long course of time, in some instances hundreds of years, which they take to accomplish their revolutions. "President Clap supposed (see Profeasor Day's View) thit the earth is furnished with its system of comets, as well as the sun-that their size, and the period of their revolutions are proportioned to the comparative smallncss of the primary body, about which they revolve-that, like the solar comets, they move off in very elliptical orbits; and, during the greatest part of their circuit, are too far distant to be visible-that, in their approach to the earth, they fall within our atmosphere-that, by the friction of thie air, they are heated, and highly electrified-that the electricity is discharged with a very violent report-that they then move off in their orbits, and, by their great velocity, are soon carried out of our sight."

The appearance of the mcteors is such as corresponds very well with this view of the subject.

The dimensions of these bodies, the rapidity of their motion, the direc. tion of their course, the proportion which they bear in sizc to their central body the earth, being about the same as the litile planets, recently discorered between the orbits of Mars and Jupiter, have to the sun, about which they revolve, all accord perfectly well with the supposition of planetary bodies moving through the lower part of their orbits, and not at all with what might be expected from matter fulling from condensed gases or vam pours, or projected from lunar or terrestrial voicinoes.

It is calculated, that if a body, moving horizontally near the earth, have a velocity of less than 300 miles in a minute, it must fall to the earth-if of more than 430 , it will, if undisturbed by other bodies, thy of in an hyperbola, and will never return.

Adequate allowance \(b_{c i n g}\) made for the resistance or the air, and the, motion of the earth, a body will, within these limits, revoive around the. earth in an ellipsis, and return at regular periods.

Now, it is very remarkable that the velocity of such meteors as have bcen observed is gencrally rather mure than 30 miles in a minute, that is, just enough to carry them clear of the eartio and yet so smail as to bring them within its sitmosphere, while moring through he lower parts of their orbits.

Granting the existence of these bodies, and, that their motion is such as has been described, it is easy to see that any cause which might produce a rupture or explosion of a part of their substance, might, very naturally, throw firagments to the ground, and the circurustances which have, in numerous instances, actually attended their descent ;-its rapidity, prored by the holes which they make in the earth, the whizzing or roarms noise, and the violent concussion; its irregularity, the fi.g.gnents being scatheret over several miles of territory, which is what we might expect from the efiitcis of a violent explosion; its happening immediately after caplosions atiluaily
heard from the fire ball and after the extinction of its light, and the minute proportion which the fragments bear to the whole body of the meteor ;--all these circumstances considered together cannot leave a doubt that in numerous instances, at least, the stones have been thrown off from a large solid body moving rapidly through the atmosphere. But, the stones bear no sensible proportion to the whole meteoric mass, and this must be supposed to move on in its orbit, scarcely disturbed by the trifling loss which it has sustained, and no longer luminous, because the heat aud electricity have been, in a great measure, dissipated by the exilosion.

There is nothing inconsistent with analogy in supposing the existence of numerous small planetary bodies in the solar system; they may be necessary to adjust the balances of motion and attraction, and they may well enough be of an uniform and sterile composition, since no analogy would lead us to suppose them inhabited, or even habitable. This conjecture derives confirmation from the discovery within a few years past, of several very small planets, in the solar systom, where they had never been suspected before.

Upon this view of the subject, it is highly probable that meteoric stones have fallen, in every age of the world, and that this phenomenon will frequently occur again.

The theory of president Clap, with the addition which has ņow been stated, appears to be liable to only two objections, of much importance.

It may be said, that it does not account for such appearances as that of Siemna, and a few similar ones, where the stones have seemed to proceed from a buining cloud. Under such circumstances of terror and amazement, there is much room for optical deception, and perhaps we are not justified in concluding, that a meteor may not illuminate a cloud, by which it is in part concealed.

The other objection is founded on the apparent inadequacy of the cause assigned by president Clap, for the ignition of the meteors ; it remains yet to be proved, that mere friction with the air is sufficient to produce strong ignition in a solid body, or to excite electricity enough to generate that effect, and the attendant explosion.

The explosion might however be owing, not merely to an electrical discharge, but also to the expansive force of vapour and gases, suddenly and powerfully rarefied by heat.

With these qualifications, the origin of meteoric stones seems to be better explained upon this, than upon any other scheme, but, as yet it can be regarded only in the light of an hypothesis, recommended by the felicity with which it explains most of the phenomena. Should one of the meteors ever approach the earth, without sufficient projectile force to carry it clear of our planet; its fall would be inevitable, and those philosophers who are so happy as to witness such a catastrophe, uninjured, will have better means than we now possess, for constructing a satisfactory theory on this obscure, but highly interesting subject.

\section*{adthonities for the preceding statements.}

Clap on Meteors. King on Meteoric Stones. Izarn on the same. Nicholson's Journal, vol. II. 218, \&c.; vol. III. 99, \&c.; vol. VI. 188, \&cc. octavo series. Philosophical Magazine, vol. XV. 289 ; vol. XVI. 293 ; vol. XVII. 229 ; vol. XX. 372. Philosophical Transactions, abridged, vol. VI. 99, \&c. Cavallo's Philosophy, vol. IV. 375, \&c. Gregory's Economy, \&c. vol. I. 508, \&c, Edinburgh Review, vol. IX. 76, \&c. Medical Repository, Sept. 1808, p. 184. Philadelphia Philosophical Transactions. Memoirs of Connecticut Academy.

\section*{Note 37, pase 110. Gallic Acid.}

The due regulation of the heat is very important in this method of obtaining gallic acid. A moderate sand-heat is sufficient, and the retort must be removed from the fire at the moment when a dark coloured oil begins to rise, or before, because this oil will redissolve, or greatly contaminate the crystals of gallic acid.

\section*{Note 38, page 149. Conselation of Alcohol.}

The congelation of alcohol was mentioned in a former note; it is to be regretted that we are not able to give the process by which this was effected; this, if published at all, it is believed has not yet reached this country. There are, however, a few facts relative to the appearances attending the congelation, which are worthy of notice. The alcohol was prepared according to Richter's process, and was of the specific gravity .798 at \(62^{\circ}\); it was enclosed in a thermometer tube, in which it was congealed. This was afterwards effected in a tube sealed at one end and open at the other; the alcohol was so far congealed, that on inverting the tube, only a very minute stream of fluid glided down the inside of the tube, and, eventually, the solid alcohol fell out into a glass, was broken into several pieces, and quickly melted; in subsequent experiments the alcohol was so completely solidified, that no portion of it remained fluid. It was found that solid masses of alcohol could be soldered together ;-in the paradoxical language of the discoverel, (Mr. Hutton of Edinburgh,) "a rod of frozen mereury or sometimes a straw cooled down to a very low temperature," was used as "a hot bath" for the purpose of fusing the frozen alcohol so as to admit of its being soldered. Mr. Hutton remarked that the alcohol crystallized, and that it sometimes separated into three very distinct strata; the uppermost was of a pale yellowish green, while the second was of a very pale yellow colour : boch these strata were very thin, the last mentioned was rather the thickest; the lowermost stratum was nearly transparent, and colourless, and very greatly exceeded the other two in quantity." In order to ascertain whether these appearances arose from a decomposition of the alcohol, Mr. Hutton mingled the results of several processes, such as have been described, and heated them to about \(120^{\circ}\) by means of a water bath, by which means a periect alcohol was reproduced. He therefore concluded that these appearances were owing to impurities, which accounted also for a difference in the forms of the crystais which had been obscured in different experiments. Mr. Hutton concludes that
the lowermost stratum contains the true alcohol, and that the other twe contain, chiefly, volatile impurities, which can be separated only by freezing, and that it is to these that the alcohol owes its peculiar flavour.

\section*{Note 39, page 220. On the Artificial Preparation of Mineral Waters.}

It is only within the last half century, that a correct knowledge of the nature of mineral waters has been obtained. Their utility in a variety of diseases has been proved by the uniform experience of mankind from remote ages; even savage nations know that there is a very great diversity in the qualities and effects of different natural waters, and they are accustomed to make use of them for not a few of the same purposes that we do. The most powerful and celebrated mineral spring of this country, was known to the Indians in its vicinity, and they first pointed it out to the white people. Before the composition of mineral waters was understood, their efficacy was imputed in a great degree, to a supposed fermentation in the bowels of the earth and to some volatile principles, too subtile to be detected by the art of man. The notions concerning them were visionary and fanciful, and bordered, not a little, on superstition.

It is not the least, among the attainuments of modern chemistry, that more correct views of this subject have been acquired, and that the exact analysis of all the most celebrated natural mineral waters has led the way to their artificial formation, upon principles of science and common sense.

To the illustrious Bergman we are indebted for some of the earliest practical researches, and most useful directions on this subject. He analysed, with accuracy, several of the famous waters of Germany, and having discovered their contents, he applied himself with such ardour and success to effect their recomposition, that in a short time, the prepared waters were introduced into the remotest provinces of Sweden. The dissertations of Bergman on these subjects should be carefully perused by all who are engaged in these pursuits.

Strictly speaking, all waters except rain and snow, and distilled waters are mineral ; because they all contain, in a greater or less degree, mineral substances dissolved in them ; even rain and snow water are not perfectly pure, and it may be doubted whether water ever is, unless distilled in glass vessels, for, water which has been condensed by the pewter worm of a common still gives a precipitate with sulphuretted hydrogen. In most natural springs and rivers, however, the proportion of foreign matter is so minute, as not materially to affect their sensible or chemical properties, and, it is only when this is the case that the term mineral is, with propriety, applied to a water.

Although there is a very great variety in the degree and nature of the impregnation of different waters, they are commonly included under a few general divisions, according to the kind and proportion of the ingredients which they contain.

They are either, 1. Saline; 2. Chalfbeate 3. Acidulous; or, 4. Hepatic ; the first, distinguished by the prevalence of saline ingredients, the second by iron, the third by carbonic acid, and the fourth by sulphuretted hydrogen. This division is rather loose, as these classes are often
more or less mixed with one another, and there are a few substances of more rare occurrence, that are not included under either of them. It may serve, however, as a guide in designating the principal yarieties of operation that are necessary in forming the different sorts of mineral waters. It is alnost superfluous to remark that a correct knowledge of the constitution of a mineral water must be attained before we can hope to succeed in preparing it artificially, and, the chemist must cither perform the analysis for himself, or confide in that of some other person.
I. Of Saline Watens. The artificial preparation of this class of waters is the most simple and easy, although their analysis is often the most complicated and difficult. All that is necessary is merely to weigh out the different salts, in the proper proportions, and dissolve them in the water.

Some of these salts are sold regularly in the shops of the apothecaries. Such are the sulphate of soda, (Glauber's salt) the sulphate of magnesia, (Epsom salt) the carbonate of soda, (sal soda) \&c. The muriate of soda, (common salt) is in every family. Sometimes these salts are sufficiently pure to be employed without any farther trouble, but, more generally, it will be necessary to redissolve and crystallize them anew.

There are some salts which are denominated incompatible, because they cannot exist in the same solution without mutual decomposition; such are muriate of magnesia and carbonate of soda; were a solution of each of these salts to be mingled, there would be an immediate precipitation of carbonate of magnesia; and muriate of soda, alone, would remain in solution. Should any analyst imagine that he had discovered such salts in contemporaneous existence in a mineral water, he must of course conclude that his analysis is erroneous, and therefore, in any attempt to form an artificial water, he will be careful not to mingle any such inconsistent ingredients.

Some salts are not to be found in the shops, and therefore must be prepared on purpose. Such are muriate of lime and muriate of magnesia. It is best to prepare these salts by adding the carbonates of lime and mag. nesia to muriatic acid diluted with one or two parts of water. For the former, marble powder should be used, formed by pounding in a clean mortar very white marble, and, if the powder have been previously exposed to a full red heat, till as much carbonic acid has been expelled as can be driven off in that way, it will dissolve with much more facility. Chalk may be used, but this is apt to produce a very frothy and troublesome effervescence, unless the acid is largely diluted, when the action will be slow; the same remarks are applicable to the carbonate of mag-nesia.-As the muriates of these two bases are very deliquescent and difficult to be crystallized, and, as they are prone, when very much concentrated, to become gelatinous, it is convenient to keep them in the fluid form, in close stopped bottles. A small portion may be measured out; for instance, two gills, and evaporated to dryness, and the residuum weighed; this will inform us how much solid salt is contained in any measured portion of the solution, and thus, much trouble may be saved, as the salts may be introducerl into the water in the fluid form. There are a few salts ocfasionally found in mineral waters, which it may be achiseable nut to intro.
duce. Such is the sulphate of lime; it does not possess any known medical efficacy, and it may be deposited in the system and create serious obstructions. For similar reasons, it is even doubtful whether the carbonate of lime ought to be added to artificial waters, at least in the proportion in which it is often found in native mineral waters; for, as it is dissolved in them only by the aid of the carbonic acid in excess, it follows that, when this acid, by the warmth of the system, is expelled from the water, in the course of its circulation, the carbonate of lime may be deposited in some of the cavities and prove a troublesome impediment; especially in the kidneys, the gall bladder or urinary bladder, and the ducts connected with them. The carbonate of magnesia is liable to be affected in a similar way, and, although these carbonates are, both, good correctors of acidity, and, in that way, useful in mineral waters, they may not always meet with an acid in the passages, which they may neutralize, and by which they may be carried off; if they should not meet an acid in the system, they would probably be deposited. Besides, their place, as antacids, is much more than supplied by carbonate of soda which is liable to none of these objections. In the composition of some mineral waters, it may therefore be adviseable to omit some of the ingredients and even to substitute others; for, we are not to presume that the substances which a mineral water has chanced to dissolve in its progress among the strata, are necessarily such, either in kind or proportion, as are best adapted to cure diseases, and therefore, it is clearly possible that a water of great utility may be formed without imitating any native mineral water. Such experiments however, ought to be directed by medical as well as chemical science.

Among the salts which have been discovered in mineral waters, the carbonates of lime, magnesia and iron ;-the sulphates of soda, magnesia and lime; the muriates of soda, lime and magnesia, and the hydro-sulphuret of lime are the most common, and they are those with which we have most to do in the preparation of artificial mineral waters. Iron is almost the only metal of much importance found in waters ; copper occurs, but more rarely, and it is not often that waters impregnated with it are used medicinally, as it is so poisonous to all animals.
II. Cfalybeate Waters. Iron gives the character to this species of waters, and it is almost always suspended in them by the earbonic acid; it, sometimes, occurs combined with the sulphuric acid, but this fact is so rare that chalybeate waters are generally acidulous and sparkling, and sometimes they are very lighly charged with the carbonic acid. The method of making a water chalybeate is simply this: very pure and clean iron, in the state of filings, is to be introduced, in the proper proportion, into water charged, or immediately to be charged, with carbonic acid; the iron will be oxidized, in the lower degree, by the water, and then will be dissolved by the carbonic acid, and the more highly the water is charged with this acid gas the more rapidly and in the greater proportion will it dissolve the iron. In estimating the proportion of the iron to be added to the water, we must allow only so much as, when combined with the oxygen and carbonic acid will equal the weight of carbonate of iron found, by analysis, in the water which we vould initate. A small quantity of iron imparts to water such decided
properties that it is necessary to be very attentive to the proportion of iron. If the iron be in the higher state of oxygenizement, it will not dissolve in the water impregnated with carbonic acid, and if, after solution by this acid, it be exposed to the atmosphere, the carbonic acid will principally escape ; the iron will pass to the state of red oxide, and will be precipitated, a mere rust, and the chalybeate will thus be decomposed. It is therefore, for both these reasons, indispensable, that artificial chalybeate waters be prepared and kept in air-tight vessels. It is for the same reason that Bergman recommends introducing the iron filings in a small bag, and directs that when the bag is removed from the mineral water vessel, it should be immediately plunged into clean water, by which means it will be kept from passing to the state of red oxide; for, the rusting of iron in common cases, is effected by the joint action of water and the atmospherical oxygen. The method recommended by Bergman of introducing an indefinite quantity of iron filings in a bag, I have found by experience not to be so good, as to put in the exact quantity of iron that is wanted, for more gives the water too high a chalybeate impregnation, and it is apt to become turbid, and to have a very disagreeable odour, like hydrogen, and, indeed, this smell probably proceeds from hydrogen, condensed in the water during its decomposition by the iron, for the chalybeate waters are prone to have something of this odour. In some artificial chalybeate waters sulphate of iron is introduced instead of combining the iron in the manner that \(I\) have described. This is a great error, and, no person will ever, in that way, succeed in imitating the native carbonated chalybeate waters. The taste and other sensible properties, as well as the medical effects are very different. Whether an artificial chalybeate has been impregnated with the sulphate or carbonate of iron, may be easily decided by the same process which is applied to natural waters of these descriptions: viz. heat the water for a short time; if it is a carbonate, the iron will speedily be deposited, in the form of a rust, and the water will no longer give the well known precipitates with the prussiate of potash and with gallic acid. But, if a sulphate of iron be present, there will be little or no deposite during the heating, and the fluid will answer to the above mentioned tests as well as before. When water is highly impregnated with carbonic acid, it acquires the chalybeate taste and other properties very rapidly ; the iron can be tasted within half an hour, after it is introduced, and twelve hours will produce a decided impregnation. Chalybeate waters are of ten more or less saline; indeed they are usually so, and some of them are strongly impregnated with salts. There is no imcompatibility between the carbonate of iron and the salts most commonly found in chalybeate springs; it frequently exists in company with the eartly carbonates and sometimes evell with the carbonate of soda. In forming a saline chalybeate, nothing more is necessary than to mix the salts, in the proper proportions, with the water, then to add the iron, and then inject the carbonic acid without delay, and to the intended extent.
III. Acmelous Watens. This is a highly interesting class of mineral waters, whose nature was entirely unknown till the discovery of carbonic acid assimilated them with the brisk fermented liquors, such as Cham+ paignc wine, porter, cider, perry, \&c. which owe their grateful pungency and.
briskness to the same cause. There is a very great difference in the proportion of carbonic acid existing in different mineral waters; even common water contains a small portion, and there are mineral springs which are impregnated with two or even three times their bulk of this acid gas. . It is the introduction of this gas which forms the most difficult and laborious part of the business of preparing artificial mineral waters. It is in this department, particularly, that modern improvements have attained a degree of excellence surpassing all previous conception, and producing results which have demonstrated that art can sometimes transcend the productions of nature.

Those who have not the means of doing better, maystill practise the ingenious, altbough simple, processes of Bergman. The water to be impregnated with the carbonic acid may be introduced into a bottle, which should be quite full, and inverted in a proper vessel ; carbonic acid, from a mixture of marble powder and dilute sulphuric acid, may then be passed up into the bottle, till about one third of the water is displaced ; then, one hand being slid under the bottle's mouth, and the other placed upon its bottom, the bottle must be briskly agitated; an absorption will take place, the hand will be pressed fast to the bottle's mouth, it should be withdrawn under water, a portion of which will rush in to supply the void, and a repetition of this operatiou, will soon saturate the water as far as it can be at the given temperature, and under the given pressure of the atmosphere. The water, thus impregnated, will have a mildly pungent and acidulous faste, and will sparkle when poured into a tumbler. The colder the water is, the more gas will be absorbed. If it is wished to add any saline ingredients; that can be done either before or after the impregnation with carbonic acid; and iron may be added to make it a chalybeate; for the acidulous waters are usually both chalybeate and saline. Although, by the means which have just been described, water can be impregnated as highly as it commonly is, in the natural acidulous waters, the impregnation may be carried much farther by peculiar contrivances and maniplations. I do not allude to the apparatus of Nooth or Priestly, which, although elegant and showy, and sufficiently powerful for the experimental illustrations of a lecture, is altogether improper for operations on a large scale and where it is desired to apply a great degree of force to effect the combination. The principal means by which water is charged with the amazing quantities of car. bonic acid gas which are, now, introduced into it, may be reduced to three heads.
1. Pressure. 2. Cold. 3. Agitation.-All these are combined in the most perfect manufactories of mineral waters, and some observations will be necessary on each of these heads.
1. Pressure. This is applied by means of strong forcing pumps which may be worked either by hand alone, by the hands aided by a lever, by a wheel, by coggs and cranks, or any other convenient mechanical power, and if the strength of men be not sufficient, that of horses may be applied, and even water, wind, and steam may be called in to our aid. This is however, by no means necessary. A strong man, after becoming accustomed to the exertion, will inject as much gas as will impart to the waters a degree
of activity far surpassing any thing which they ever possess in nature. As this impregnation depends entirely on the pressure which is applied to the gas to force it into union with the water, it is obvious that the containing. vessels must possess a degree of strength proportioned to the force which is to be applied. Glass is entirely improper, however thick, and apparently strong, because an explosion, which is no uncommon accident in these operations, would be attended with the most hazardous consequences. The vessels must therefore be made of wood or metal. Very strong casks of oak, made of the very best timber, and constructed in the most careful manner, are the most proper instruments, if we regard, primarily, the purity of the waters and the health of those who use them. The casks must be very strongly bound and guarded with iron hoops and strong iron bars in every direction; they must be furnished with an internal apparatus for agitation, or they must rotate on an axis to cffect the same object. Their strength must be such that they will not strain so as to produce cracks, or even the smallest aperture, for absolute tightness is indispensable to success. In an apparatus of this kind, water may be combined with four or five times its bulk of carbonic acid gas, and it then dissolves iron with considerable rapidity, and the carbonates of lime and magnesia are also taken up by the excess of carbonic acid.

The containing vessel may be made of copper, tinned on the inside, and secured by being enclosed in a strong iron bound cask. This structure has the advantage of greater strength and tightness, and of being repaired with less difficulty than vessels made of wood. The only objection against it arises from the great tendency which copper has to become corroded by most chemical agents; the tin is a partial protection, but there is reason to fear that in the course of some time, the tin will become so thin as not to protect the copper, and thus a deleterious impregnation may get into the water.
2. Cold. With a given pressure more gas will be combined with water the colder it is kept during the operation. Therefore, the containing vessels should, if possible, be surrounded with ice during the impregnation, or immersed in cold water. If the vessels have been suffered to lie in an ice house and thus to become ice cold, it will greatly facilitate the combination.
3. Agitation. Most of the remarks under this head have been already anticipated. Agitation is necessary in order to bring the water and gas into complete mixture, and to mingle water that is more highly saturated with that which is less so, that thus there may be an equal distribution of principles, which, without agitation, it would take much longer to effect. At the end of the operation the water in the containing vessel exists under a prodigious pressure. In order to create fountains of mineral waters, notling more is necessary than to connect a proper tube with the containing vessel, and let it pass into an upper room and terminate in any convenient or ornamental jet, furnished with a stop-cock. This apparatus should be made of materials that will not contaminate the water. On opening the stop-cocks, the water will, of course, be discharged with a velocity proportioned directly to the pressure in the containing vessel, and inversely to the distance which the water has to ascend. By means of a peculiar contrivance
the impregnated water can be transferred from the containing vessel into bottles, still retaining nearly all the pressure which it had in the vessel ; consequently, when the bottles are opened, the fluid will fly or sparkle as the fermented liquors do. Glass bottles are not strong enough for this purpose, and the stone ware bottles of this country are not sufficiently firm in their texture to contain the impregnated water; the pressure forces it 1 hrough the sides of the bottle upon which it appears like a dew. The bottles made for this purpose in London are entirely impervious.

\section*{IV. Hepatic Waters.}

Waters of this description are so extremely offensive, on account of the fctid odour which attends them, that they are rarely demanded as an article of manufacture. On account of the action which they exert on most metallic substances it is proper that only clean glass vessels should be used in manufacturing them; a tub of wood not painted, may be used as a pneumatic cistern. In impregnating water with sulphuretted hydrogen it is not neccssary to employ the powerful condensing machines which have been mentioned. Were there no objection to the use of metallic instruments, still it would be unnccessary to condense into water a very large quantity of a kind of gas, of which the smallest portions can hardly be borne. Water impregnated with sulphuretted hydrogen as highly as soda water is with carbonic acid, would, when drawn, either from fountains or bottles, emit a most noxious and insupportable effluvium. To form an hcpatic water, either a portion of the dry sulphurets of lime, soda, or potash, may be dissolved in water, when it will immediately acqure the hepatic odour ; or (a way that is probably better) sulphuretted hydrogen gas, derived from sulphuret of iron, and diluted sulphuric or muriatic acid may be passed into an inverted bottle containing water, in the manner that was mentioned for forming the acidulous waters. Agitation being used, a sulphureous water will be obtained, sufficiently strong for medical purposes. A sulphureous bath may be formed by passing a stream of sulphuretted hydrogen gas through a tub of water, taking care to agitate the water frequently. The gras that does not combine in its passage may be caught in an inverted jar, and poured from it into another, and back again, till the water is sufficiently impregnated. The hepatic waters frequently contain some of the ingredients of the preceding classes, and these may be added by very obvious means.

In manufacturing mineral waters of every description, and especially those of the three first classes, care should be taken to select a natural water, which is, in a common sense, pure, that is, free from any pcculiarity ofodour, taste, or colour.

\section*{Note 40, page 272. Test for Arsenic.}

Dr. Marcet, one of the physicians to Guy's hospital, London, has invented a new test for arsenic. His directions are as follows: "To the suspected fluid, previously filtered, add, first, a little dilute nitric acid, and, afterwards, nitrate of silver, till it shall cease to produce any precipitate. The muriatic acid (if any be present) being thus removed, whilst the arscnous acid (if any and in whatever state) remains in the fluid, the addition of
arimonja will instantly produce the yellow precipitate in its characteristic form. It is hardly necessary to add, that the quantity of ammonia must be sufficient to saturate any excess of nitric acid which the solution may conntain. (Phil. Mag. Vol. XLI. page 124.)

The yellow precipitate here mentioned, is a compound of white oxide of arscnic, or arsenous acid with oxide of silver ; the use of the ammonia is to form an arsenite of ammonia, which, by double decomposition with nitrate of silver, affords arsenite of silver, and nitrate of ammonia, which last rem mains in solution, while the arsenite of silver is precipitated. The nitric acid is added, to prevent the arsenite of silver, which is soluble in nitric acid, from being precipitated in mixture with muriate of silver, when muriatic acid is present; if this latter acid is not present, there is no occasion to add nitric acid. "The addition of ammonia is necessary because arsenic acid alone cannot decompose nitrate of silver; but in Fowler's solution, in which the arsenic is already combined with an alkali, the decomposition. takes place at once without any addition of ammonia. The fixed alkalis can therefore answer a similar purpose; but ammonia has this sdvantage, that it does not, when added singly, decompose nitrate of silver, a circumstance, which, in using the fixed alkalis, might occasion some confusion.'P "The quantity of ammonia must not be too large, for in that case the pre. cipitate is re-dissolved. But, even then, it may be made to re-appear by the addition of nitric acid in sufficient quantity to saturate the alkali. In this case however the precipitate is not permanent, owing to its being soluble in the nitrate of ammonia, which is formed in the process. Carbonate of ammonia has also the power of producing and re-dissolving the precipitate.
"The fixed alkalis in excess, have not the power of re-dissolving the pre \({ }_{;}\) cipitate."

\section*{APPENDIX TO THE NOTES.}

\section*{Iode or Violaceous Gas.}

I subjoin an account of this new substance from professor Cooper's \(\mathrm{Fm}_{\text {: }}\) porium, No. 5, page 175, having seen nothing more extensive on the subject.

Iove or Violaceous Gas. The Royal Society met, after the holidays, when a paper from Sir H. Davy was read, describing a new and importans discovery. About two years ago, a Parisian manufacturer of salt petre, using all kinds of sea weed as a substitute for barilla, discovered that his vessels were excessively corroded by a particular substance of a beautiful violet colour; he communicated the fact to some Paris chemists, but no particular notice was taken of it, until Sir H. Davy went to Paris.

This new substance is easily procured, by pouring sulphuric acid on the residuum of sea weed, after the carbonate of soda has been extracted. It appears that all the vegetable products of the sea shore yield it when thus treated. By pouring the acid on the residuary ashes of the sca weed, this new and most beautiful violet coloured gas is obtained.

The French propose calling it iode gas (from the Greek word ion, violet) but Sir H. Davy prefers the term violaceous gas, as most suitable to English phraseology; its combination with hydrogen he agrees may be called hydro-iodic-gas, \&c. Its properties are equally important to the scientific -hemist and manufacturer, as a dye and pigment. It is the heaviest known gas; 100 cubic inches of it weigh \(95-5\) grains ; it is easily disengaged at the temperature of \(156^{\circ}\); at a low one, it condenses into fine violet coloured crystals ; it is rapidly absorbed by the metals, uniting with iren, merch-
ry, tin, lead and zinc, and changing them into salts of the most beautiful tints of yellow, orange, and brown. It has many analogies with oxygen, the alkalis, and chlorine or oxymuriatic acid. Like the alkalis, it has great affinity to oxygen, from which it can be expelled by heat; it experiences no change by the action of the voltaic pile, yet rapidly combines with phosphorus, hydrogen, and all the muriates; it is a non-conductor, is very slightly combustible, yet it is a supporter of combustion. It is so easily united with all the common metals, and conver's them into such fine pigments, that, before as many months elapse in this country (England) after its discovery, as years have done in Paris, it will be prepared by all our colour manufacturers, and used by our cabinet makers, wood stainers, and dyers. The existence of this substance tends to support an opinion of Sir H. Davy, that acids and alkalis do not depend on any peculiar acidifying principle, but on certain modifications of matter. All the iodats of iron and zinc are soluble in ether and spirits of wine, and many of them in water.

\section*{New Explosive Compound.}

It is some time since we were informed in this country, that a new explesive compound had been discovered at Cambridge in England, by Mr. Burton; that it was formed by the action of nitrate of ammonia in solution, upon oxy-muriatic acid gas, and that it was supposed to be a compound of nitrogen and oxymuriatic acid; its explosive powers were said to be of the most terrible kind, and the chemical world heard, with much concern, that Sir Humphrey Davy had sustained a severe injury from it, which had endangered his sight. More recently, a very able and interesting report concerning this new substance has appeared in Nicholson's Journal, (Vol. xxxiv. page 180 and 276) and we are indebted to its authors, Messrs. R. Porrett Jr. W. Wilson, and Rupert Shirk, for much curious information, some of the most important particulars of which will be mentioned in the following note.

The compound was formed by these gentlemen by filling, over warm water, glass receivers of the capacity of about sixteen cubic inches, and transferring them into small basins containing the ammoniacal saline solutions. The compound can be formed, not only from the nitrate of ammonia, but from the phosphate, muriate, sulphate and oxalate, \(a_{n}\) from the muriate of zinc with excess of ammonia, and from the muriate of ammonia and iron by sublimation. The carbonate of ammonia, triple muriate of platina and ammonia, and the sulphate of copper with excess of ammonia did not afford it. Its formation was prevented by sulphur in solution in the ammonia, or in powder within the receiver ; by charcoal in fine powder, adhering to the interior moist surface of the receiver, by carbonic acid gas, or atmospherical air equal in volume to one third the chlorine gas, or by an equal volume of hydrogen gas.

It has been asserted that the compound was best formed at a temperature below freezing, but this proves to be erroneous; on the contrary, it succeeds best, if the solutions be warm; when at \(90^{\circ}\), it was abundantly and quickly formed, and more rapidly still, when the solution was at \(180^{\circ}\).
" As soon as the receiver of cilorine gas is placed in the solution of the ammoniacal salt, an absorption of the gas commences, and the solution rises slowly in the receiver. An action is apparent on the surface of the solution, which resembles small filaments reaching to the depth of about one tenth of an inch. These filaments, on close inspection, appetr to be composed of extremely minute bubbles of gas, ranged in a line one above another to the surface. When about one fourth of the gas has disappeared, some of the explosive compound may generally be observed on the surface of the sclution in a thin film ; the surface then looks oily, and appears divided so as to give the idea of a map. As the solution rises in the receiver, the quantity of the explosive compound increases; and it then collects into one or two flattened globules, which, when they become very bulky, fall through the solution to the bottom. The whole of the gas is absorbed. The solution, after the formation of the compound, contains free muriatic acid, and also
some of the compound in solution, if we may judge from its smell and yellow colour." The authors of the memoir before us reason upon the hypothesis of Sir Humphrcy Davy respecting chlorine, and say, that the chlorine gas is in part absorbed by the solution, "and there decomposes the ammonia of the salt, by combining with its hydrogen (with which it forms muriatic acid) and scts free its azotc, to combinc with another part of the chlorine, with which it forms the explosive compound." Upon the old hypothesis we should say, that the oxygen of part of the oxymuriatic acid combines with the hydrogen of the ammonia to form water; muriatic acid is thus set at liberty, while the remaining oxymuriatic acid combines with the nitrogen, to form the explosive compound. The two theories, therefore, agree in the material fact, that the compound is essentially formed between the oxymuriatic acid and the azote.

The same explanation applies to other ammoniacal salts; " the nature of the incombustible acid (with the exception of the carbonic) being of no im-. portance, the only use of the acid being to prevent, by engaging the ammonia, the rapid action which the chlorine gas would exert on that alkali in an uncombined state ; the existence of it in that state would also be incompatible with that of the explosive compound." This is true, notwithstanding that the explosive compound can be formed by confining chlorine gas over. a solution of pure ammonia; but, in this case, the explosive compound is really formed from the muriate of ammonias which is produced between the oxymuriatic acid and the ammonia.

The result of the action of oxymuriatic acid and ammonia is different according to the proportions; if "the quantity of ammonia present in a free state, is more than the chlorine can decompose and neutralize, the whole of the chlorine gas goes to the formation of muriate of ammonia, and no explosive compound is formed, but in its stead, azotic gas is found at the termination of the experiment, equal in volume to one third of that of the chlorine gas employed"-" but when the quantity of chlorine gas present, is more than is necessary to bring the ammonia to a neutral state; or, which is still better, when the ammonia has been previously neutralized by an acid, the azote, instead of remaining after the experiment in a state of gas, is found combined with the superabundant chlorine forming the explosive compound."

Some of the most important properties of the explosive compound are as follows : "Its colour is that of bees wax ; it is very fluid; it sinks, although with extreme slowness, in a solution of red sulphate of iron. Hence we eonclude, that it must be of the specific gravity of about 1.6. It disappears after some time, even undcr the surface of water, or of the solution in which it was formed; but evaporates almost instantaneously when exposed to the air; it then diffuses its peculiar and penetrating odour through the surrounding atmosphere, which then affccts the eyes in a very painful manner, causing them to shed tears. Its action on the lungs, however, we conceive to be much milder and less prejudicial than that of chlorine gas."

The compound is difficult to keep, on account of its volatility; if put however into a glass tube bout nine inches long, of which it should fill about half an inch from the bottom, the remaining space being nearly filled with the solution; and if the tube be then hermetically sealed by the blow pipc, it may be preserved for a length of time, but is finally dissolved in the water of the solution unless the quantity of water is small. Its volatility renders it equally difficult to transfer the compound from ressel to vessel; this is best done by drawing it up into a small glass syringe, the piston of which may be made of wood or copper, and wrapped round with cotton; it is easily ejected from the same instrument. It is very necessary, that every instrument employed about it should be perfectly clean, as the smallest quantity of grease, oil, or other combustible matter will causc it to explode; and, although it ordinarily does not explode without such contact, or without a temperature of \(200^{\circ}\), yet in a course of 200 experiments three explosions took place, whose causc was completely unknown; thcrefore a mask and gloves should be worn during all experiments on this substance.

This compound remained fluid at \(-16^{\circ}\); at \(160^{\circ}\) it distilled rapidly, and much gas was evolved; it did not explode at \(200^{\circ}\), but wâs nearly evaporized; at \(212^{\circ}\) it exploded violently. Its exploding temperature is therefore: above \(200^{\circ}\) and not above \(212^{\circ}\).

The compound was easily converted into vapour when the pressure of the atmosphere was removed or materially diminished; by the application of red hot iron to the tube containing the vapour, it exploded, and shattered the tube.

The explosive compound was not altered by the current of galvanic elec. tricity.

A globule of the compound was placed beneath water, in an iron ladle; or sometimes in a paper filter, and thus a great variety of substances were brought into contact with it.

Explosions more or less violent occurred with the following substancss;-
Super-sulphuretted hydrogen formed by adding hydroguretted sulphuret of potash to muriatic acid.

Phosphuret of lime, phosphorus, (extremely violent,) caoutchouc, myrrh, phosphorus dissolved in liquid, sulphuretted hydrogen, phosphuretted camphor, palm oil, ambergris, whale oil, olive oil, do. camphoretted, do. sulphuretted, do. thickened by boiling on oxide of mercury, linseed oil, oil of turpentine, oil of tar, do. of amber, do. of petroleum, do. of orange peel, various metallic soaps as of silver, copper and lead, and manganese, pure fused potash (owing to the heat produced by combining with the water,) solution of pure ammonia, phosphuretted hydrogen gas, sulphuretted do. arsenic melted do. oxygen gas,-nitrous gas. (A peculiar apparatus was used. to bring it into contact with gases.)

Combustible bodies act on this compound with the most energy ; there are however some exceptions, as in the case of ether and alcohol.

The effects appear to be owing principally to chlorine in a very condens. ed state, and in weak chemical union; they resemble those produced by the gas separated from oxymuriate of potash by strong sulphuric acid.

There are some combustible bodies, which unite with this compound without decomposition, of which camphor is a remarkable instance.

Animal substances appear to act with less energy than the analogous vegetable ones, of which adipocire, spermaceti, butter and lard are examples.

Earthy salts do not explode with it; among the metallic ones those formed from the nitric salts do, and those from the muriatic salts do not explode.

Our limits will not permit us to introduce the statements and reasonings of the ingenious authors of the memoir now under consideration; their general conclusions are, that the compound consists of a large quantity of chlorine gas very much condensed, and in union with a small quantity of nitragen ; they think they find reason to conclude also that hydrogen enters into the composition of the compound, and they admit that it is possible oxygen also does.

The subject is very curious, and serves to admonish us that we may be, and probably are, very far from having discovered all the active and even dangerous compounds, of which, under various modifications, matter is suscentible.

\section*{GENERAL INDEX.}
[The following Index refers only to the original work, and not to the Notes of Professor Silliman, which are noticed only in the Table of Contents at the beginning of each vol.]

\section*{A.}

Acetate of alumine, ii. 161
ammonia, ii. 160
barytes, ii. 160, 230
copper, ii. 53, 159, 290
iron, ii. 61
lead, ii. 71, 229
lime, ii. 160
magnesia, ii. 161
potash, ii. 158, 160, 283.
silver, ii. 228
soda, ii. 160
strontites, ii. 161
tin, ii. 68
zinc, ii. 74
Acetic acid, ii. 157
obtained from wood, ii. 158
specific gravity no test of its strength, ii. 159
properties of, ii. 160
mode of ascertaining the purity of, ii. 278
Acetous acid, ii. 157 mode of ascertaining the purity of, ii. 279
Acids, general properties of, i. 207
all contain oxygen, i. 207
terminology of, i. 208
metals oxidized by, ii. 15
native vegetable enumerated, ii. 107
specific gravity not always a test of the strength of, ii. 159
found in animal substances, ii. 178
tests of, ii. 235
quantity of taken up by alkalis and earths, ii. 374
quantity of alkalis and earths taken up by, ii. 374
Acid, acetic, ii. 157, 278
acetous, ii. 157, 279
amniotic, ii. 179
arsenic, ii. 81
arsenous, ii. 81
benzoic, ii. 116, 280
boracic, i. 324 ; ii. 279
camphoric, ii. 121
carbonic, i. 216
chromic, ii. 87

Acid, citric, ii. 107
columbic, ii. 93
fluoboric, i. 329
fluoric, i. 327
formic, ii. 183
gallic, ii. 110
glacial sulphuric, ii. 56
hydrothionic, i. 261
laccic, ii. 117
lactic, ii. 180, 199
lithic, ii. 178
malic, ii. 111
mellitic, ii. 143
molybdenic, ii. 88
moroxylic, ii. 117
muriatic, i. 294; ii. 278, 385
sulphuretted, i. 308
murio-phosphoric, i. 308, 317
murio-phosphorous, i. 308, 321
murio-sulphuric, i. 315
nitric, i. 270 ; ii. 179, 278
nitro-muriatic, i. 314
nitro-sulphuric, ii. 39
nitrous, i. 283 ; ii. 179, 278
oxalic, ii. 104, 117, 225 -
oxymuriatic, i. \(294,305,309\); ii. 385
oxy-nitric, i. 269
phosphoric, i. 317, 318; ii. 117
phosphorous, i. 317, 320
prussic, ii. 117, 182
pyro-ligneous, ii. 127, 158
pyro-tartaric, ii. 114
rosacic, ii. 179
saccholactic, ii. 180
sebacic, ii. 181
suberic, ii. 139
succinic, ii. 122, 279
sulphuric, i. 242, 286; ii. 55s 224, 277, 350
sulphurous, i. 246
tartaric, ii. 112, 279
uric, ii. 178
zoonic, ii. 183
Acidula, ii. 107 note, 117
Adipocire, ii. 177
Adopter, i. 32, 332
Aeriform bodies. See Gases.
Affinity, chemical. See Chemical Affinity.
of aggregation, i. 38, 47
alective, i. 51, 71, 72

Affinity, double elective, i. 64, 72
resulting, i. 59
elementary, i. 59
disposing, i. 60
complex, i. 64, 72
quiescent, i. 65
divellent, i. 66
simple, table of, ii. 381, 384
- Igriculture, application of chemis-
try to, i. 17 ; ii. 295
Air, expansion of, by heat, ii. 359
Albumen, properties of, ii. 166
tests of, ii. 166, 168, 169
not chemically altered by heat, ii. 167
eause of the coagulation of, ii. 169

Alcohol, preparation of, ii. 146
properties of, ii. 147-152
mixtures of water with,iii. 148
combustion of, ii. 143, 150
expansion of, ii. 148
substances soluble in, ii. 149
solubility of salts in, i. 149
decomposition of, ii. 150
composition of, ii. 150
analysis of, ii. 150, 551
action of acids on, ii. 151
ase of, as a test, ii. 235
mode of ascertaining its purity, ii. 291
and water, specific gravity of different mixtures of,ii. 349
solubility of substances in, ii. 371
substances insoluble in,ii. 371
sulphurized, i. 240
Atembic, i. 31, 331
Algaroth, powder of, ii. 78
alkali, silicated, i. 200 volatile. See Ammonia.
. Alkalis, properties of, i. 173
analysis of the fixed, i. 174 volatile i. 185
action of, on metals, ii. 19
use of, as tests, ii. 226
kests of, ii. 235
.Alloys, ii. 22, 26
apt to separate when in fusion, ii. 26
terminology of, ii. 26
qualities of the metals altered in, ii. 27
Alum, i. 255
component parts of, i. 255
mode of ascertaining the purity of, ii. 284
Alumine, attempt to decompose, i. 193, 203
method of obtaining, i, 201 its properties, i. 202

Alumine, carbonate of, i. 233
sulphate of, i. 255
tests of, ii. 235
sulphite of, i. 259
nitrate of, i. 292
muriate of, i. 304
acetate of, ii. 161
tests of salts of, ii. 235
Alumium, i. 203
Amalgams, ii. 26, 43, 66, 67
Amber, ii. 122
acid of. See Succinic Acid.
Imbergris, ii. 176
Ammonia, preparation and qualities of, i. 185 ; ii. 316
specific gravity of, i. 185
analysis of, i. 186
may be inflamed when mixed with oxygen, i. 187
decomposition of, by potassium, i. 188 ; ii. 316
its base forms an amalgam with mercury, i. 189
sature of this amalgam, \(i\). 190; ii. 3" \&
sub-carbonat: of, i. 226mode of preparing, i. 227 ; ii. 316
carbonate of, i. 226, 228its use as a test, ii. 226
-mode of ascertaining its purity, and that of its solution, ii. 281
sulphate of, i. 250
sulphite of, i. 259
hydro-sulphuret of, i. 264
-its use as a test, ii. 235
hydroguretted - sulphuret of, i. 266
nitrate of, i. 290
muriate of, i. 301 ; ii. 175 mode of ascer-
taining its purity, ii. 283
hyper-oxymuriate of, i. 313
solution of copper in, ii. 53
oxalate of, ii. 105
important as a test of lime, ii. 105
citrate of, ii. 109
acetate of, ii. 160
fluate of, ii. 226
use of, as a test, ii. 226
succinate of, as a test, ii. 233
tests of, ii. 235
solution of, method of ascertaining its purity, ii. 281
formation of, from charcoal and pearlash, ii. 316
does not contain oxygen, \(i\) i. 317

Immonia, quantity of, in solutions of
Ammoniaco, magnesian sulphate,i. 255
Ammonium, i. 190
Amniotic acid, ii. 179
Amnios, liquor of the, ii. 202
Analysis of earths and stones, ii. 246
inflammable fossils, ii. 260
lime, ii. 295
marls, ii. 297
minerals in general, ii. 241
mineral waters, ii. 220
ores, ii. 261, 268
salts, ii. 244
soils, ii. 298
Animal oil, ii. 213
substances, ii, 162-method
of staining black, ii. 36-a-
analysis of, ii. 163-primary,
ii. 163-more complex, ii. 183

Anthracite, ii. 331
Antimony, ii. 76
oxides of, ii. 77, 78
ignited, detonates with the
vapour of water, ii. 77
sulphuret of, ii. 77
glass of, ii. 77
mode of ascertaining its purity, ii. 285
liver of, ii. 77
hydro-sulphuretted oxide of, ii. 77
action of acids on, ii. 77,78
alloys of, ii. 78
analysis of ores of, ii. 264
tartarized, mode of ascertaining its purity, ii. 286
Snts, acid obtained from, ii. 183
Apparatus, chemical, i. 27, 331
Woulfe's, i. 333
Cuthbertson's, i. 334
Aqua fortis, mode of ascertaining the purity of, ii. 278. Sce Nitric Acid.
Arbor Dianx, ii. 37
Archil, ii. 130
Argentine flowers of antimony, ii. 77
Arsenates, ii. 81
Irsenic, mode of obtaining, ii. 80
properties of, ii. 80
tinges copper white, ii. 80
properties of white oxide of, ii. 81
sulphurets of, ii. 81
analysis of ores of, ii. 264
method of discovering, ii. 269, 273
compound of hydrogen with, ii. 325
alloy of potassium with, ii 325

Arsenic, acid, mode of obtaining, ii.. 81, 82
properties of, ii. 82
Arsenous acid, ii. 81 tests of, ii. 227
Arsenuretted hydrogen gas, ii. 82, 32.
Arts, application of chemistry to, i .
19 ; ii. 291
Asparagin, ii. 144
Asphaltum, ii. 141
Atmospheric air, i. 131, 268
weight of, i. 135
Atoms, ultimate of bodies, weight of ii. 328

Attraction, i. 38
Azote. See Nitrogen:

\section*{B.}

Balloons, i. 141
Balsams, ii. 122
Barilla, mode of detecting the adul-, teration of, ii. 292
Barium, i. 196
Barometer, rules for reducing gases to a mean height of,ii.344
Barytes, analysis of, i. 195 properties of, i. 195 base of, i. 195 carbonate of, i. 229, 251
mode of dis-
covering, ii. 274
sulphate of, i. 250
method of procuring pure, i. 194
sulphite of, i. 259
hydroguretted sulphuret of. i. 266
nitrate of, i. 291
muriate of, i. 303
hyper-oxymuriate of, i. 318
.oxalate and super-oxalate of, ii. 106
citrate of, ii. 109
acetate of, ii. 160
[230]
its use as a test,ii.
use of, as a test, ii. 227
test of, ii. 535
Basis, in dyeirg, what, ii. 128
Baume's hydrometer, degrees of, reduced to the common standard, ii. 349
Bell-metal, ii. 54
Benzoic acid, ii. 116 mode of ascertaining: the purity of, ii. 280
Bile, resin of, ii. 175, 193 of the ox, ii. 192
peculiar matter in, ii. 193 yellow matter of, ii. 193 component parts of, ii. 194,19\% of other animals, ii. 194
human, ii. 194

Bile, calculi of, ii. 196
Bismuth, properties of, ii. 75
oxide of, ii. 75
action of acids on, ii. 75
alloys of, ii. 76
its fumes destroy the ductility of gold, ii. 76
analysis of ores of, ii. 264
Bitter principle, ii. 137 artificially formed, ii. 138

Bitumen, elagtic, ii. 142
Bitumeñs, ii. 140
Black dye, for animal substances,ii. 36 vegetable substances, ii. 131

Black's furnace, i. 29, 340
Bleaching, i. 309, 314
Blood absorbs oxygen, i. 129
appearances of, ii. 184
coagulation of, ii. 184, 185
serum of, ii. 184
serosity of, ii. 185
crassamentum of, ii. 185
frin of, ii. 185
red globules of, ii. 185
action of gases on, ii. 185, 186
effects of respiration on, ii. 186
acts on the air through the skin, ii. 189
its uses in the animal economy, ii. 189
low-pipe, i. 37
with oxygen and hydrogen, i. 141
Boiling point, i. 101
varied by pressure, i. 102 of different substances, ii. 355

Bolognian phosphorus, i. 251
Bones, ii. 212
distillation of, ii. 213
analysis of, ii. 213, 214
Boracic acid, mode of obtainıng,i. 325 properties of, i. 325 decomposition of, i. 525 component parts of, i. 327 saline compounds of, i. compound of flueric with, i. 329, 330 test of, ii. 235 mode of ascertaining the purity of, ii. 279
Boracium, i. 325
Barate of soda, i. 327 ; ii. 86
mode of ascertaining the purity of, ii. 284
Borax, i. 324 ; ii. 86,284
Poyle's fuming liquor, i. 266
Brain, substance of the, i. 218

Brass, ii. 54
Brazil wood, as a dye, ii. 130 infusion of, as a test, ii.
Bronze, ii. 54
[223]
Butter, ii. 197, 199
of antimony, ii. 78
zinc, ii. 74
C.

Cajeput oil, ii. 126
Calcium i. 198
Calculi, urinary, ii. 178, 208 [211] varieties of, ii. 208, : of brutes, ii. 212
biliary, ii. 196
Calico-printing, ii. 129
Calomel, ii. 42
mode of ascertainingsits purity, ii. 286
Caloric, general observations on, i. 73 repulsive, i. 74
expands bodies, i. 76
tends to an equilibrium, i. 76
moves immeasurably quick in all directions, i. 77
conducting power of bodies for, i. 78
effects in which it loses its distinguishing properties, i. 78
absorbed in liquefaction, i. 78, 97
given out by increasing the density of bodies, i. 78
not chemically combined. when latent, i. 79
capacity for, i. 79
absolute quantity of, i. 80
expands ail bodies, i. 81
its motion, i. 90
reflection of, i. 90
refraction of, i. 91
absorption of, i. 92
conductors of, i. 93 ; ii. 10
the cause of fluidity, i. 97
given out by liquids on becoming solid, i. 100
evolved during the separation of a salt from its solution, i. 101
the cause of vapour, i. 101
its particles repulsive, i. 103
absorbed in evaporation,i.104.
evolved during the condensation of vapour, i. 105
the whole quantity in a body cannot be measured, i. 106
capacity for, i. 109
chemically combined in gases, i. 122
erolved from gases by mechanical pressure, i. 123

Caloric, generally absorbed during solution, i. 150
charcoal, a very slow conductor of, i.-214
admeasurement and effects of, ii. 351
table of effects of, ii. 354
expansion of air by, ii. 359
liquids by,ii. 360
water by, ii. 360
solids by, ii. 361
glass by, ii. 361
specific, tables of, ii. 365, 367
firee, i. 75, 81
latent, i. 78,98
latent, apparatus for showing the most important facts respecting, i. 335
of fluidity, i. 98
radiant, i. 77, 90
specific, i. 109
Calorimeter, i. 98
Camphor, ii. 121
acidification of, ii. 121
artificial substance resem-
bling, ii. 121
Canton's phosphorus, i. 260
Caoutchouc, ii. 126
preparation of ether for dissolving, ii. 154
mineral, ii. 142
Carbon, i. 211
combustion of, i.' 214
gaseous oxide of, i. 233
combination of hydrogen with, i. 235
Carbonates, i. 222
tests of, ii. 235, 236
Garbonate of alumine. i. 233
ammonia, i. 226
barytes, i. 229, 251; iị. 274
copper, ii. 52
glucine, i. 233
iron, ii. 61
lead, ii. 69, 71
lime, i. 230
magnesia, i. 232
potash, i. 222, 224
soda, i. 226
strontites, i. 230
ytrria, i. 233
zircon, i. 233
Càrbonic acid, i. 216
method of procuring, i. 217
properties of, i. 218
generated in several cases of combustion, i. 220
tests of, ii. 235, 3.31
YOL. 1 .
54

Carbonic acid gas, quantity of, ab sorbed by water, i. 148, 219-weight of, i. 218-its cffects on vegetation, i. 221
oxide, quantidy of, absorbby water, i. 149
converted into carbonc acid by oxymuriaticgas, 1.307
Carbonous oxide, i. 233
method of procuring, i. 234
properties of, i. 234
Carburets, ii. 26
of iron, ii. 63
Carburetted hydrogen, quantity of, absorbed by water, i. 149-several varieties of, i. 235 -methods of procuring, i. 236-combustion of, i. 236 -specific gravity of, i. 238

Carmine, how made, ii. 132
Cassius, purple powder of, ii. 31
Cast iron, ii. 63
Castor, ii. 176
Catechu, ii. 98
Caustic, lunar, ii. 37, 288
Cazok, i. 251
Cerium, ii. 94
analysis of ores of, ii. 266
Ceruse. See White Lead.
Chalk, i. 231
Chameleon mineral, ii, 87
Charcoal, i. 211
how obtained, i. 212
its properties, i. 213
imbibition of air by, i. 213
resists putrefaction, i. 214
why it makes the best iron,
ii. 63, note
combustion of different
kinds of, ii. 330
not deprived of its hydrogen by sulphur, ii. 331
See Carbon.
Cheese, ii. 198
Chemical re-agents ii. 291
their use to certain artists and manufacturers, ii.291-to farmcrs and country gentlemen, ii. 295-miscellaneous uses of, ii. 314
laboratory, i. 27
elements, new system of, in: 325
apparatu=, i. 27, 331

Chemical afinity, i. 38, 47-how exerted, i.49-causes that modify its action, i. 52--if not modified, would unite bodies in all proportions, i. 58-unites atoms in simple proportions only, i. 60estimation of its forces, i. 61-experimental illustrations of, i. 68
action,i. 47 -its principal ef-fects,i.49-of compounds the result of the affinities of their clements, i. 59-will not take place without solution, i. 70-does not take place at a perceptible distance, i. 70
Chemistry, distinguished from natural philosophy, i. 10
defined, j. 10
utility of its study as a science, i. 12, 22
modes of teaching, i. 22
classification of the objects of, i. 22
new doctrines and nomenclature of, i. 25, 208,210 economical, i. 19
Chrome, ii. 87
analysis of ores of, ii. 266
Chiomic acid, in. 88
Cimabar, ii. 44
mode of ascertaining its purity, ii. 238
Citrates, alkaline, ii. 109
earthy, ii. 109
metall.c, ii. 109
Citric acid, process for obtaining, ii. 107
properties of, ii. 109
combinations of, ii. 109
Cloth, methods oî̀ remoring spots from, ii. 315
Clyssus of nitre, i. 286
Coak, ii. 142
Coul, quantity of, required for the evaporation of water, i. 105 vareties of, ii. 142 analysis of, ii. 260
Coating for retorts, i. 34
Cobalt, method of obtaining, ii. 83

Cobalt, properties of, ii. 83
oxides of, ii. \(83,84,85\)
solutions of, ii. 84
alloys of, ii. 85
analysis of ores of, ii. 264
Cochineal, ii. 130
Co.ffee, 1i. 137
Cohesive affinity, i. 39, 47

> methods of over- coming, i. 40, 74
Cold, artificial methods of producing,
i. 98 ; ii. 155,362

Collar joint, for uniaing long or crooked tubes, i. 335
Colouring matter, ii. 128
Colours destroyed by charcoal, i. 214 substantive and adjective, ji . Columbium, ii. 93, 94 [128
analysis of ores of, ii. 266
Combination alters the properties of bodies, i. 48, 71
Combustible bases, compounds of oxygen with, i. 208
Combustion in oxygen gas, i. 125
consumes oxygen, i. 127
increases the weight of bodies, i. 128
acids are supporters of, i. 209
spontaneous, ii. 61, 120
Compounds, their chemical action the result of the affinities of their parts, i. 59
proportions of the elements of some, ii. 329
Congelation, artificial, i. 78; ii. 351, 362
Cooling, rate of, varied by different circumstances, i. 89, 92
Copper, properties of, ii. 50
oxides of, ii. 50
sulphates of, ii. 51
carbonate of, ii. 52
nitrate of, ii. 52
hydro-oxide of, ii. 52
muriate of, ii. 52,53
sub-muriate of, ii. 53
acetate of, ii. 53, 289, 290
sulphuret of, ii. 53
combination of ammonia with, ii. 53
alloys of, ii. 53, 54
arsenite of, ii. 81
analysis of orcs of, ii. 262
mocie of detecting, ii. 274
Cork and its acid, ii. 139
Corrosive sublimate, i. 42, 43-mode of discoveriag; ii. 273method of ascertaining its purity, ii. 286
Cream, ii. 197

Cream of tartar, ii. 112, 115-mode of ascertaining its purity, ii. 283
Crocus metallorum, ii. 77
Cracibles, i. 30
platina, ii. 34
C'rystallization, i. 42, 69 water of, i. 43
Cirystals, structure of, i. 44
Cupel, ii. 70
Cupellation, ii. 70
Cupeling furnace, i. 29, 339
Curd, ii. 198, 199
Cuticlé, ii. 217

\section*{D.}

Dalton, Mr. his new system of chemical elements, ii. 326
Decomposition, effected by galvanism, i. 161
simple, i. 51
Deliquescencc, i. 43, 224
Deoxydizing power of light, i. 112
Detonating powders, i. 312 ; ii. 31,38 ,
41, 47, 80
Diamond, i. 211
combustion of the, i. 214
Digestion, secretions subservient to, ii. 190 .

Dippel's oil, ii. 213
Distillation, i. 31
Ductile metals, ii. 11
Dutch gold, ii. 54
Dying, art of, ii. 128
E.

Earths, i. 192
compounds of metallic bases with oxygen, i. 193
dissolved by carbonic acid, tests of, ii. 235
examination of, ii. 246
means of separating, ii. 259
Ear-zax, ii. 176
Eflorescence, i. 43, 57
its influence on chemic-
al affinity, i. 57
Esg-shells, ii. 215
ESG, white of. See Allumen.
Elastic gum. See Caonichouc.
Elasticity, its effect on chemical affinity, i. 56, 59
increased by caloric, i. 74
Elecampane, peculiar substance from, ii. 145

Elective affinity, i. 51, 72
Electricity, chemical agencies of, i. theory of, i. 153
Electro-motion, i. 169
Elements, chemical, new system of, ii. 326-proportions of, in some compounds, ii. 329

Emulsions, ii. 118
Enamelling furnace, i. 29, 339
Engraving on glass, i. 328
Efidermis, ii. 217
Epsom salt. See Mugntesia, sulphate of.
Ether, solution of phosphorus in, \(j\). 324
solution of gold in, ii. 32
platina in, it. 34
properties of, ii. 154-1.56
purification of, ii. 152
analysis of, ii. 156
mode of ascertaining its purity, ii. 291
acetic, ii. 154
fluoric, li. 154
muriatic, ii. 1.53
nitric, ii. 152
phosphoric, II. 153
pyro-acetic, ii. 159
sulphuric, ii. 152
Ethiops mineral, ii. 43-mode of as. certaining its purity, ii. 288
per se, ii. 40
Eudiometer, Berthollet's, i. 132
Dalton's, i. 275
Davy's, i. 278
Guyton's, i. 134
Hope's, i. 134, 278
Pepy's, i. 135
Seguin's, i. 132
Tolta's, i. 138, 333 ; ii. 331
with nitrous gas, i. 275
with solution of nitrous
gas and iron, i. 278
with sulphuret oí potash, i. 133
with nitrogen gas, i. 333
Eudiometry, remarks on some processes of, ii. 331
Evaporating furnace, i. 28, 336
vessels, i. 30
Evaporation occasioned by caloric, i. 101
Expansion, i. 81, 75, 76
Extract, vegetable, ii. 97
Eye, humours of the, ii. 201

\section*{F.}

Farina, method of obtaining, ii. 123 properties of, ii. 124
Fat of animals, ii. 177
oxygenated, ii. 178
Feathers, ii. 218
Fecula, vegetable. Sce Farina.
Fermentation, vinous, ii. 146, 150
Fibre, woody, ii. 127
Pibrin, ii. 171

Fibrin, of the blood, ii. 185
Finery cinder, ii. 55
Fire produced by compressing air, i. 123,141
Fireworks without smell or smoke, i. 137

Fish, scales of, ii. 217
Flesh of animals, ii. 171, 173, 215
Flints, i. 199
liquor of, i. 200
Fluate of ammonia, ii. 226
Muidity, caused by caloric, i. 97
Fluids of the various cavities of the body, ii. 201
Fluoboric acid, i. 329
Fluoric acid, mode of obtaining, i. 327, 328
liquid, i. 329
compounds of, i. 328
properties of, i. 328
compound of the boracic with, i. 329
gas, mode of obtaining, i. 327-liecomposed by potassium, i. 328
Flux, black, ii. 267
white, ii. 267
Pluxes, ii. 20, 267
Formic acid, a compound of the mal-
- ic and acetic, ii. 183

Freezing points of liquids, ii. 354
mix'tures, ii 362
apparatus, ii. 351
Pricorific mixtures, tables of, ii. 362 -364
Fruit, method of removing stains of, ii. 314
"ulminaiing gold, ii. 30, 31
mercury, ii. 41
powder, i. 287
silver, ii. 38
Fuming liquoi, Boyle's, i. 266
Libavius's, ii. 67
Furnaces, chemical, i. 28, 335
Aiken's portable blast, i. 335
Knight's portable, i. 336
wind, i 337
reverberatory, i. 339
cripelling, or enamelling, i. 359

Black's portable, i. 29, 340
Chenevix's wind, i. 340
general remarks on, i. 340
fusion, i. 74
watcry, i. 43
Frasible metal, ii. 76
Plustic, ii. 151
G.

Gaiena, ii. 72
Callate of iron, ii. 59, 111

Gallic acid, methods of obtaining, ii. 110
characters of, ii. 111
Galls, tincture of, as a test, ii. 224
used as a test in substance, ii. 224
Gall-stones, ii. 195
a valuable pigment, ii. 196
Galvanic arrangements, construction
of, i. 152
pile, i. 152
theory of the action of, i. 169
apparatus, i. 334,340
Galvanism, i. 152
excitement of, i. 153
effects of, i. 154
its similarity to electricity, i. 158
chemical agencies of, \(i\). 159
theory of the changes produced by, i. 166
Gases, what, i. 24
effect of caloric in, i. 74
expansion of by heat, i. 81
manner in which they conduct heat, i. 94
apparatus for experiments on 2 . i. 115
method of weighing, i. 119
transferring, i. 120
caloric chemically combined in, i. 122
give out their latent heat by compression, i. 123, 140
their bulk inversely as the pressure on them, i. 123
table of, i. 124
become thoroughly mixed under all circumstances, i. 142
quantities of, absorbed by water, i. 149
absorption of, by charcoal, i. 213
[270
general laws of their union, i .
table of absolute weights and specific gravities of, and the quantities absorbable by water, ii. 342
table of specific gravities of several, ii. 343
solid and fiuid compounds of, ii. 344
rules for reducing to a given pressure and \(t \in m p e r a t u r e\), ii. 344
apparatus for procuring, i. 333
receivers for, i. 333,340
Gas-holder, i. 117, 334:

Gas, ammoniacal, i. 185
arsenuretted hydrogen, ii. 82, 325
azotic, or nitrogen, i. 129
carbonic acid, i. 216
carbonous oxide, i. 216, 233
carburetted hydrogen, i. 235
fluoboric acid, i. 329
fluoric acid, i. 327
liydro-carburetted, i. 235
hydrogen, i. 136 ; ii. 332
lydro-zincic, ii. 73
muriatic acid, i. 294
nitric acid, i. 270
nitric oxide, i. 274
nitrogen, i. 129
nitrous, i. 274
nitrous acid, i. 284
nitrous oxide, i. 279
olefiant, i. 236, 238
oxycarburetted hydrogen, i. 238
oxygen, i. 124; ii. 70
oxymuriatic acid, i. 294, 305
phosphuretted hydrogen, i. 323
potassuretted hydrogen, i. 183
sulphuretted hydrogen, i. 261 ; ii. 326
sulphurous acid, i. 246
telluretted hydrogen, ii. 324
Gastric juice, ii. 191
Gazometer, i. 116, 333 mercurial, i. 118
Gelatine, method of obtaining, ii. 163 propertics of, ii. 164 tests of, ii. 165 decomposition of, ii. 166
Gems, preparation of sulphur for taking impressions from, i. 230
Gilding of steel, ii. 32
Glacial sulphuric acid, ii. 56
Class, how made, i. 200
decomposed by fluoric acid, i . 200
method of etching on, i. 328
tinged blue by zaffie, ii. 85
expansion of by heat, ii. 361
of antimony, ii. 77-mode of asccrtaining its purity, ii. 285
Glauber's Salt. Sec Sulthiate of Soda.
Glucine, attempt to decompose, i . 194
method of obtaining it, i.204
its properties, i. 205
carbonate of, i. 233
sulphate of, i. 256
nitrate of, i. 292
muriate of, i. 305
Gitrcium, i. 205
Glue, ii. 163
Gluten, animal, ij. 171

Gluten, vegctable, ii. 124
Gold, malleability of, ii. 10
ductility of, ii. 11
physical qualities of, ii. 29
chemical qualities of, ii. 30
oxides of, ii. 30
fulminating compound of, ii. 30
prccipitates of, ii. 31
solution of, in cther, ii. 32
purification of, ii. 32, 70
alloys of, ii. 32
fineness of, ii. 32 .
its colour destroycd by palla-
dium or platina, ii. 47
imitations of, ii. 54
its ductility destroyed by being kept in fusion near melted bismuth, ii. 76-and a small portion of antimony, ii. 78
analysis of orcs of, ii. 261
Golden sulphur of antimony, ii. 77
Goulard's extract, use of, as a test ii. \(167,168,170\)

Gravel, urinary, ii. 178
Gravitation, i. 38
Gravity, great specific, i. 56
specific, method of taking, ii. 244 -of gascs, ii. 342 , 343 -of solids and fluids, ii. 346-rules for calculating absolute weight from, ii. 348-of mixtures of alcohol and watcr, ii. 349 -of sulphuric acid and water, ii. 350of ammonia and water, ii.
Gravy, ii. 216
[350
Grease, method of removing spots of, ii. 315

Green, Scheele's, ii. 81
Guaiacum, ii. 122
Gum, ii. 99
acid obtained from, ii. 180.
British, ii. 124
clastic, ii. 126
Gum-resins, ii. 122
Gun-metal, ii. 54
Gunpowder, sulphur may be burned out of without inflaming it, i. 242
composition of, i. 287
peculiar kind of, i. 313
Gypsum, i. 253

\section*{H.}

Hahnemann's wine tcst, ii. 276
Hair, method of staining it black,ii. 37 analysis of, ii. 217
Harrowgate water, i. 261; ii. 238
Harishorn, spirit of, mode of asccre taining its purity, ii. 281

Heat. See Caloric.
Hepars, i. 260
Hiccory, wild American, ii. 131
Homberg's pyrophorus, i. 256-inflamed by uitrous gas, i. 274
sedative salt. Sec \(\boldsymbol{B o}\) racic Acid.
Honey, ii. 103
stone, ii. 143
Hoofs, ii. 216
IIorn, ii. 215.
House-leek, malic acid obtained from, ii. 112

Hydrat of cobalt, ii. 85
copper, ii. 52
iron, ii. 56
lime, i. 197
nickel, ii. 64
Hydro-carburet, i. 235
Hydrogen, probably metallic, i. 191 ; ii. 320
compounds of metals with, ii. 22,324
nature of, examined, ii. 320
Hydrogen gas, i. 136
method of procuring, i. 136
its properties, i. 136
burned under a tube produces a musical sound, i. 140
caution with respect to firing, i. 140, note
explodes by compression with oxygen, i. 140
weight of, i. 141
with oxygen forms water, i. 143
quantity of, absorbed by water, i. 149
combination of oxymuriatic acid with, i. 307
every kind of, contains charcoal, and probably oxygen, ii. 332 [326]
arsenuretted, ii. 82,
carburetted, i. 235
oxycarburetted, i. 238
phosphuretted, i. 323
potassuretted, i. 183
sulpliuretted, i. 261
union of alkalis and earths with, i. 262
suiphuretted, nature of: ii. 326

Hydrogen gas, supersulphuretted, i.: 264
telluretted, ii. 324
* sulphuretted, compounds of, with oxides, ii. 22
with metals, ii. 24
liquid, i. 267
IIydroguretted sulphur, i. 265
sulphurets, methods of forming, i. 265, 266-properties of, i. 266

Hydrometer, Baume's, degrees of, reduced to the common staudard, ii. 349
Ifyduo oxide of cobalt, ii. 85
copper, ii. 52
iron, ii. 56
Hydro-sulphurets, i. 262, 265
alkaline, tests of lead, ii. 72blacken glass, ii. 72
Hydro-sulphuret of ammonia, i. 264 barytes, i: 264
lime, i. 264; it. 235
potash, i. 263
soda, i. 264
strontites, i. 264
zinc, ii. 74
Hydro-sulphuretted oxides, ii. 22
Hydro-thionic acid, i. 261
Hydro-zincic gas, platina fused by the
combustion of, ii. 73
Hydrurets, ii. 323
Hygrometer, i. 75
Hygrometric water, i. 149
Hyper-oxymuriates, i. 313 ; ii. 387

\section*{I.}

Ice, quantity of caloric absorbed in the liqucfaction of, i. 98
lighter than water, i. 151
Indizo, ii. 129, 137.
In flammable fossils, analysis of, ii. 260
Ink, ii. 59, 111
that is not easily destructible, ii. 60

Inks, sympathetic, ii. \(53,58,59,72,84\),
Ink-stains, method of removing,ii. 314
Insalubility, i. 55
Inulin, ii. 145
Iridium, ii. 47
analysis of ores of, ii. 266
Iron, solutions of, precipitated by exposure, ii. 19
properties of, ii. 54
oxides of, ii. \(54,55,56\)
sulphate of, ii. 56-its use as a test, ii. 228-mode of ascertaining its purity, ii. 285
lora, hydrate of, ii. 56
oxysulphate of, ii. 56
nitrate of, ii. 56
muriate of, ii. 56, 57
prussiate of, ii. 57
gallate of, ii. 59, 111
tannate of, ii. 59, 133
cold-short, ii. 60
phosphate of, ii. 60
oxy-phosphate of, ii. 60
succinate of, ii. 61,122
acetate of, ii. 61
carbonate of, ii. 61
combination of sulphur with, ii.
sulphuret of, ii. 62
super-sulphuret of, ii. 62
combination of carbon with, ii. 62
cast, or crude, ii. 63
malleable, or bar, ii. 63
why wood charcoal preferable
in the manufacturing of, ii.
63, note
tests of, ii. 224, 235
analysis of ores of, ii. 262
Iron-moulds, ii. 60
method of removing, ii. 314
Ising-glass, ii. 163
Ittria. See Yttria.
Ivory, method of covering with silver, ii. 37
J.

Jelly, animal. See Gelatine.
vegetable, ii. 100
Joints, fluid in the cavities of the, ii. 202

\section*{K.}

Kermes mineral, ii. 77
Koumiss, ii. 199
L.

Laboratory, i. 27
Lac, contains wax, ii. 136
Laccic acid, ii. 117
Lactic acid, ii. 180, 199
Lakes, how obtained, ii. 131
Lamp for chemical purposes, i. 31
Yamp-black, ii. 213
Lard, ii. 178
Latent heat, i. 78, 98
Lead, properties of, ii. 68
oxides of, ii. 69
carbonate of, ii. 69, 71-mode of ascertaining its purity, ii. 289
purification of gold and silver by, ii. 70
mode of procuring oxygen from oxides of, ii. 70
danger of keeping water in, ii. 70

Lead, not soluble in sulphuric acid, ii. 70
sulphate of, ii. 70
nitrate of, ii. 71-its use as a test, ii. 229
muriate of, ii. 71
super-acetate of, ii. 71-mode of ascertaining its purity, ii. 289
acetate of, ii. 72-its use as a test, ii. 167, 168, 170, 229.
acetate of, remedy against, ii. 277
tests of, ii. \(72,274,276\)
its oxides decompose muriate of soda, ii. 72
sulphuret of, ii. 72
super-sulphuret of, ii. 72
analysis of ores of, ii. 263
method of detecting, ii. 275 in wine, ii. 276
rendered more dense by compression, ii. 333
soluble in distilled water, ij. 333
Leaf-gold, ii. 11
Lemons, acid of, ii. 107 See Citric Acid.
Libavius, fuming liquor of, ii. 67
Life, supported by oxygen gas, î. 129, 135
Ligaments, ii. 216
Light, chemical effects of, i: 111,307
reflection of, by metals, ii. 10
Lignin, ii. 127
Lime, analysis of, i. 193
properties of, i. 197
base of, i. 198
hydrat of, i. 197
milk or cream of, i. 193
carbonate of, i. 230
tests of, ii. \(235^{\prime}\)
does not attract carbonic acię
gas when dry, i. 230
subcarbonates of, i. 231
sulphate of, i. 253
tests of, ii. 235, 236
sulphite of, i. 259
sulphuret of, i. 260
hydrosulphuret of, i. 26as tests of, ii. 235
hydroguretted sulphuret of, 267
nitrate of, i. 291
muriaie of, i. 304
as a test, ii. 234
hyper-oxymuriate of, i. 314 useful in bleaching, i. 814
phosphuret of, j. 322
tungstate of, ii. 90
test of, ii. 10.5

Lime, oxalate of, ii. 105
citrate of, ii. 108
acetate of, ii. 160
prussiate of, as a test, ii. 231
tests of, ii. 236
mode of determining the purity of, ii. 295
stone, i. 231
water, i. 198
use of, as a test, ii. 227
Liquefaction, i. 78, 97
Liquids, expansion of, by heat, i. 81
manner in which they conduct heat, i. 94
give out heat on becoming solid, i. 100
freezing points of, ii. 354
boiling points of, ii. 355
expansion of by heat. ii. 360
tube for dropping, i. 333
bottle for ascertaining specific gravity of, i. 332
Jiquor of surfaces, ii. 201
lithic acid, ii. 178
litmus, infusion of, ii. 222-its use as a test, ii. 223-reddened by vinegar as a test, ii. 223
Liver of antimony, ii. 77
sulphur, i. 260
Locf sugar, preparation of, ii. 101
Luva cornea, ii. 36
Lumar caustic. See Silver, nitrate of.
Lutes; i. 34

\section*{M.}

Madcler, ii. 130
lake from, ii. 131
Magistery of bismuth, ii. 75
Magnesia, analysis of, i. 193
properties of, i. 198
base of, i. 199
carbonate of, i.232-mode of ascertaining its purity, ii. 290
sulphate of, i. 254 mode of ascertaining its purity, ii. 284
sulphite of, i. 259
nituate of, i. \(2: 2\)
muriate of, i. 304
oxalate of, ii. 106
citrate of, ii. 109
acetate of, ii. 161
tests of salts of, ii. 236
mode of ascertaining its purity, ii. 290
.Wasnium, i. 199
Matic acid, methods of obtaining, in. 111
properties of, i. 119
aTalleability, ii. 10

Maltha, ii. 141
Manganese, method of obtaining, ii. 85
"properties of, ii. 85, 86
oxides of, ii. 86
action of acids on, ii. 86
gives a violent tinge to borax, ii. 86
compound of its oxide with potash gives different colours with water, ii. 87
sulphuret of, ii. 87
sulphuretted oxide of, ii. 87
alloys of, ii. 87
analysis of ores of, ii. 265
mode of ascertaining the purity of, ii. 294
Manna, ii. 103
Marble, i. 231
Marls, analysis of, ii. 297
Mass, meaning of, as used by Berthollet, i. 54
.Massicot, ii. 69
Natches, phosphoric, i. 324
Muttras, i. 35, 331
Measures,English,reduced to French, ii. 334

Swedish, ii. 335
old French, ii. 335, 339
modern French, ii. 340
ounce of Dr. Priestley, reduced to French and English cubic inches, ii. 341
Mechanical division, influence of, on affinity or solution, i . 68
Medicine, application of chemistry to, i. 18
Melasses, ii. 101
Mellilite, ii. 143
Mellitic acid, ii. 143
Melting points of solids, ii. 354,376
Membranes, ii. 216
Nercurial trough, i. 118
Mercury congelation of, i. 99 ; ii. 39 combination of, with potassium, i. 181-with sodium, i. 184-with ammonium, i. 189 -with the bases of the earths, i. 193 its specific gravity increased by congelation, ii. 40
volatilization of, ii. 40
oxides of, ii. 40-methods of ascertaining their purity, ii. 287, 288
sulphate and supersulphate of, ii. 40,41

Wercury, nitrate of, ii. 41-its use as a test, ii. 230
subnitrate of, ii. 41
nitrous oxide of, ii. 41
fulminating, ii. 41
muriate of, ii. 42-tests of, ii. 227, 234, 273-method of ascertaining its purity, ii. 286
submuriate of, ii. 43-method of ascertaining its purity, ii. 286
alloys of, ii. 43
sulphurets of̂, ii. 43
use of, as a test, ii. 227
analysis of ores of, ii. 264
method of ascertaining its purity, ii. 286, 287
apparatus for freezing, i. 334
-Metallurgy, application of chemistry to, i. 20
Metals, their conparative power of conducting heat, i. 93
fused and ignited by electricity and galvanism, i . 159, 160
enumeration of, ii. 9
general properties of, ii. 9
order in which they reflect light and heat, ii. 10
chemical properties of, ii. 11
oxidation of, ii. 13-21
proportion of oxygen necessary for the solution of, ii. 17
different stages of oxidation of, ii. 17
action of alkaline solutions on, ii. 19
reduction of, ii. 20
alloys of, ii. 22, 26
compounds of hydrogen with, ii. 22
compounds of sulphur with, ii. 22-sulphuretted hydrogen with, ii. 24-phosphorus with, ii. 25-carbon with, ii. 26
their qualities altered in alloys, ii. 27
classification of, ii. 29
malleable, ii. 29
brittle and easily fused, ii. 75-difficultly fused, ii. 83
refractory, ii. 91
use of, as tests, ii. 227
tenacity of several, ii. 332
table of some qualities of, ii. 376
colours of precipitates from, ii. 378,379

Meteoric stones, all contain iron alloyed with nickel, ii. 64
Milk, description and properties of, ii. 197
vinous fermentation of, ii. 199
sugar of, ii. 176, 180, 199
acid of, ii. 180, 199
different kinds of, ii. 200
Mindererus's spirit, ii. 160
Minerals, general directions for the examination of, ii. 241, 244
Mineral waters, analysis of, ii. 220 examination of, by re-agents, ii. 221 substances that may beexpectedin,and means of detecting them, ii. 235 analysis of, by evaporation, ii. 236
Molecule, integrant, i. 46
Molybdena, ore of, ii. 88, 266
mode of obtaining, ii. 88, 89
properties of, ii. 89
oxides of, ii. 89
action of acids on, ii. 89
analysis of ores of, ii. 266
Molyblenate of potash, ii. 89
Molybdenic acid, mode of obtaining, ii. 88
properties of, ii. 89
Mordaunt, what, ii. 128
Moroxylic acid, ii. 117
Mother-of-pearl, ii. 215
Mucilage, ii. 99
Mucus, ii. 167, 170
tests of, ii. 170
of the nose, ii. 200
Mufles, i. 30
Muriate of alumine, i. 304
ammonia, i. 301 ; ii. 175, 283 - hyperoxygenized, i. 313
barytes, i. 303 ; ii. 230 -hyperoxygenized, i. 314
bismuth, ii. 75
copper, ii. 52, 53
glucine, i. 305
iridium, ii. 47
iron, ii. 56, 57
lead, ii. 71
lime, i. 304 ; ii. 234, 235
hyperoxygenized, \(i\). 314
magnesia, i. 304
mercury, ii. \(42,43,227\), 273
platina, ii: 34

Muriate of potash, i. 300 ; ii. 235 -hyperoxygenized, i. 310
rhodium, ii. 45
silver, ii. 36
soda, i. 300 ; ii. 175, 235, 282-hyperoxygenized, i. 313
strontites, i. 303-hyperoxygenized, i. 314
tin, ii. 67
yttria, i. 305
zinc, ii. 74
zircon, i. 305
Muriates, tests of, ii. 235
hyperoxygenized, i. 310, 314
Muriatic acid, i. 294; ii. 385
its attraction for water, i. 294
attempt to investigate the nature of, i. 296 ; ii. 385
process for preparing, i. 297
its properties, i. 299
tests of, ii. 235
mode of ascertaining the purity of, 3.278
oxygenized, i. 305
sulphuretted, i. 308
gas, mode of obtaining, i. 294-properties of, i. 295action of potassium on, i. 296-water essential to, i. 296-its affinities very strong and extensive, i. 297oxygenized, i. 305
Mrurro-phosphoric acid, i. 308, 317
Murio-phosphorous acid, i. 308, 321
Murio-sulphuric acid, i. 315
Muscle, basis of, ii. 171
converted into fat, ii. 177
component parts of, ii. 215
Muscovado sugar, ii. 101
Musical sounds, from burning hydrogen gas under a tube, i. 140
Myrica cerifera, berries of, contain wax, ii. 136
Myrtle-zax, ii. 136

\section*{N.}

Nails, ii. 216
Naphtha, ii. 140
\(\mathcal{N}\) arcotic principle, ii. 138
Natural history, assisted by the knowledge of chemistry, i. 12

Natural philosophy, i. 10-distinguished from chemistry, i. 10 -requires a knowledge of chemistry, i. 12
Neutral salts, i. 209
Neutralization, i. 48, 63, 67, 71
Nickel, method of purifying, ii. 64 properties of, ii. 64, 333
alloyed with iron in all meteoric stones, ii. 64
analysis of ores of, ii. 265
Nitrate of alumine, i. 292
ammonia, i. 290
antimony, ii. 78
barytes, i. 291; ii. 230
bismuth, ii. 75
cobalt, ii. 84
copper, i. 70 ; ii. 52
glucine, i. 292
iron, ii. 56
lead, ii. 71, 229
lime, i. 291
magnesia, i. 292
mercury, ii. 41, 230
potash, i. 284; ii. 282
silver, ii. \(35,37,228,288\)
soda, i. 289
strontites, i. 291
tin, ii. 67
yttria, i. 293
zinc, ii. 74
zircon, i. 292
Nitre, i. 284
Nitric acid, i. 270
properties of, i. 272,273
table of strength of, i. 272
decomposition of, i. 271, 273
process for preparing, i . 287
in its pure state elastic, i. 330
use of as a test, ii. 225
test of, ii. 235
mode of asoertaining the purity of, ii. 278
Nitric oxide, i. 274
Nitrites, i. 295
Nitrogen gas, i. 129
a compound of hydrogen and oxygen, \(i\). 130, 191 [319
this questionable, ii.
how procured, i. 130
its properties, i. 130
weight of, i. 130
quantity of, absorbed by water, i. 149
mixture of oxygen with, i. 268,270

Nitrogen gas, nature of, examined, ii. 319
gaseous oxide of. See Nitrous Oxide.
Nitro-muriate of antimony, ii. 78 cobalt, ii. 84 gold, ii. 30 tin, ii. 68
muriatic aćid, i. 314 sulphuric acid, ii. 39
Nitrous acid, i. 283
use of as a test, ii. 225
mode of ascertaining the purity of, ii. 278
gas, quantity of absorbed by water, i. 149
properties of, i. 274
applied to eudiometry, i. 275
decomposition of, i. 278
synthesis of, i. 278
oxide, quantity of absorbed
by water, i. 149
mode of obtaining, i . 279
test of its purity, i. 281
properties of, i. 281 effects of respiring it, i. 282
oxide of mercury, ii. 41, 287
Nitrum flammans, i. 290
Nomenclature, new, i. 25, 208, 210 ;
ii. 21

Nose, mucus of the, ii. 170
0.

Oil, inflamed on the surface of water, i. 312
Dippel's animal, ii. 213
of wine, ii. 152
Oils, animal, ii. 177
fixed, how obtained, ii. 118
properties of, ii. 118
with alkalis form soap,
ii. 118
dissolve sulphur, ii. 119
rendered dry by metallic oxides, ii. 119
distillation of, ii. 119
combustion of, ii. 119
action of acids on, ii. 119
spontaneous combustion of, ii. 120
volatile, or essential, ii. 120
mode of detecting their adulterations, ii. 291

Olefiant gas, quantity of, absorbed by water, i. 149
method of procuring, i. 236

Olefiant gas, properties of, i. 237,238 action of oxymuriatic acid gas on, i. 308
Opium, ii. 138
Ores, analysis of, ii. 261
in the dry way, ii. 266
Orpiment, ii. 81
Osmium, ii. 47
analysis of ores of, ii. 266
Ounce measures reduced to cubic inches, ii. 341
Oxalate of ammonia, ii. 105, 106
barytes, ii. 106
lime, ii. 105, 106
magnesia, ii. 106
potash, ii. 105, 106
soda, ii. 105, 106
strontian, ii. 106
Oxalates, use of, as tests, ii. 225
Oxalic acid, mode of obtaining, ii. 104
properties of, ii. 104
composition of, ii. 104, 105
found native in vegetables, ii. 117
use of, as a test, ii. 225
Oxidation, i. 129; ii. 13, 28
different stages of, ii. 17
Oxides, how produced, i. 129; ii. 13
all yield their oxygen to potassium, i. 182
different, ii. 17
quantity of acid required for their saturation in proportion to their oxygen, ii. 18 their solubility proportionate to their oxygen, ii. 19
decomposition of, ii. 20
terminology of, ii. 21
hydro-sulphuretted, ii. 22
sulphuretted, ii. 22
colours and proportions of, ii. 376

Oxy-carburetted hydrogen, i. 238
Oxygen, not the principle of acidity
solely, i. 129, 207 ; ii. 387
compounds of combustible bases with, i. 208
proportion necessary for the solution of different metals, ii. 17
maximum quantity absorbed by different substances, ii. 380 .
gas, i. 124
procured from various substances, i. 125 ; ii. 70
its properties, i. 125

\section*{Oxygen gas, weight of, i. 125 \\ diminished in combustion, i. 127 \\ its union produces an oxide, an acid, or an alkali, i. 128 \\ supports animal life, \(i\). 129, 135 \\ apparently absorbed by the blood, i. 129 \\ with hydrogen forms water, i. 143 \\ quantity of, absorbed by water, i. 149 \\ mixture of nitrogen with, i \(268,270^{\circ}\) \\ mode of procuring from oxides of lead, ii. 70}

Oxy-muriate of tin, ii. 67 antimony, ii. 78
Oxy-muriatic acid, i. 294 ; ii. 385
method of forming, i. 305
test of its purity, i. 306 [306 properties of, i. classes with oxygen, being an acidifying principle, ii. 385
gas, mode of obtaining, i. 305 -its properties, i. 306combines with hydrogen,i. 307
Oxy-rutric acid, i. 269
Oxy-phosphate of iron, ii. 60
Oxy-sulphate of iron, ii. 56

\section*{P.}

Paint, fine redish brown, ii. 53
fresh, injurious effects of, ii. 121
method of removing spots of, ii. 315

Palladium, ii. 4.5
test of, ii. 47
alloys of, ii. 47
analysis of ores of, ii. 266
Paxcreatic juice, ii. 192
Paper, preparation of, for tests, ii. 222
dark blue,round sugar-loaves, a test, ii. 223
Papin's digester, i. 104
Pearls, ii. 215
Pearlash, i. 223
method of ascertaining the real quantity of alkali in, i. 223; ii. 292

Pearl-white, ii. 75
Peat, ii. 143
Pericardium, liquor of the, ii. 201
Peroxides, ii. 21
Petroleum, ii. 141
Pewter, ii. 68
Phlogiston, ii. 12
Phosphate of iron, ii. 60
soda, i. 320 ; ii. 233
Phosphates, i. 320
Phosphites, i. 320
Phosphori, solar, i. 113, 251, 260
Phosphoric acid, i. 318
method of preparing, i. 318
properties of, \(\mathbf{i} .318\)
exists in vegetables, ii. 117
test of, ii. 235
matches, i. 324
Phosphorous acid, i. 320
properties of, i. 321
compound of oxymuriatic with, i . 308, 321
Phosthorus, action of oxymuriatic aacid gas on, i. 308
its character, i. 315
analysis of, i. 316
oxygenization of, i. 317
mode of obtaining, i. 319
binary compounds of, i. 321
liquid, i. 324
solution of, in ether, i. 324
combines with metals, ii. 25
Phosphuret of carbon, i. 316
lime, i. 322
potassium, i. 181
sodium, i. 184
sulphur, i. 321
zinc, ii. 74
Phosphurets, metallic, ii. 25
Phosphuretted hydrogen gas, prepa.
ration of, i. 323-
properties of, \(i, 323\)
-nature of, ii. 326
Photometer, i. 114
Picromel, ii. 193, 194
Pinchbeck, ii. 54
Pitch, mineral, ii. 141
Pit-coal, ii. 142
Plaster of paris, i. 253
Plasters, ii. 119
Platina, purification of, ii. 33
properties of, ii. 33
tests of, ii. 34,35
uses of, ii. 35
etherial solution of, ii. 34

Platina destroys the colour of gold, ii. 47
fused by the combustion of hydro-zincic gas, ii. 73
analysis of ores of, ii. 261
Plumbago, ii. 63 method of ascertaining, ii. 260 composition of, ii. 350
Plumber's solder, ii. 68
Plumbum corneum, ii. 71
Pneumato-chemical trough, i. 116
Poisons, method of detecting, ii. 269
remedies against some, ii. 277
Portable furnaces, i. 29, 335, 340
soup, ii. 163
Potash, preparation of, i. 173
never quite free from carbonic acid and water, \(i\). 174; ii. 322
properties of, i. 174
analysis of, i. 174
component parts of, i. 183
subcarbonate of, i. 222-method of obtaining, i. 223its use, as a test, ii. 226mode of ascertaining its purity, ii. 280
of commerce, i.223-method of ascertaining the real quantity of alkali in, i. 223 -mode of ascertaining its purity, ii. 292
carbonate of, i. 224-its difference from the subcarbonate, i. 225
sulphate of, i. 248
mode of ascer-
taining its purity, ii. 282
supersulphate of, i. 249
sulphite of, i. 258
hydroguretted sulphuret of, i. 266
nitrate of, i. 284; ; ii. 282mode of ascertaining its purity, ii. 282
nitrate of, i. 293
muriate of, i. 300
hyper-oxymuriate of, i. \(\mathbf{3 1 0}\) its powerful action on inflammable bodies, i. 312
prussiate of, ii. 58-best mode of preparing, ii. 59 -its use, as a test, ii. 231
arsenate of, ii. 81 molybdenate of, ii. 89
oxalate of, ii. 105
superoxalate of, ii. 105
quadroxalate of, ii. 105

Potash, citrate of, ii. 109
tartrate of, ii. 115-mode of ascertaining its purity, ii. 283
supertartrate of, ii. 115mode of ascertaining its purity, ii. 283
acetate of, ii. 160 -mode of ascertaining its purity, ii. 283
use of, as a test, ii. 226, 227
solution of, mode of ascertaining its purity, ii. 280
Potassium, i. 177, 179
mode of procuring, i. 175
its properties, i. 180
its action on water, i. 180
acids, ii. 181
phosphuret of, i. 181
sulphuret of, i. 181
amalgam of, i. 181
reduces all oxides, i. 182
alloy of ammonium with, i . 191; ii. 316
action of sulphuretted hydrogen on, i. 262
nature of, examined, ii. 320
alley of tellurium with, ii. 324
arsenic with, ii. 325
action of on some inflammable substances, ii. 38 \%
Potassuretted hydrogen gas, i. 183
Potato, analysis of, ii. 123
Pot-metal, ii. 54,
Precipitate per se, ii. 40
red, ii. 41
Precipitates, apparatus for drying, i. 35
Precipitation, i. 4.2,51
jars for, i. 332
Priestley, Dr. his ounce measures rereduced to cubical inches, ii. 34.1

Prince Rupert's metal, ii. 54
Printer's types, ii. 79
Protoxides, ii. 21
Prussian blue, method of preparing, ii, 182
Prussiate of iron, ii. 57 lime, ii. 231 palladium, ii. \(47^{7}\) potash, ii. 58, 59, 231
Prussic acid obtained from veget:bles, ii. 117
mode of obtaining, \(i\) i182
properties of, ii. 183
Purple powder of Cassius, ii. 31
Putrefaction resisted by charcoa, i. 214

Putrefaction retarded by carbonic a- Salt, common. See Muriate of Soda cid, i. 221
of sorrel, ii. 105, 117
spirit of. See Muriatic Acid.
Pyro-acetic ether or spirit, ii. 161
Pyroligneous acid, the same with the acetic, ii. 127, 158
Pyrometer, i. 81, 202
scale of Wedgwood's, ii. 351
Pyrophorus, Homberg's, i. 256, 274
Pyro-tartaric acid, ii. 114
Q.

Quodroxalate of potash, ii. 105
Quercitron bark, ii. 131
Quicksilver. See Mercury.
Quills, coagulated albumen, ii. 218
R.

Hudiant heat, i. 77, 90
Radishes, scrapings of, stain paper as a test, ii. 222, 224
Re-agents, ii. 221, 291
Realgar, ii. 81
Receiver, qnilled, i. 32, 331, 332
Red lead, ii. 69
Reduction of metals, ii. 20
Refractory metals, ii. 29
Rennet, ii. 198
Resins, ii. 121
animal, ii. 175,193
Respiration diminishes the bulk of air, i. 135
- produces carbonic acid, i. 221
function of, examined, ii. 186

Retc mucosum, ii. 217
Retinasphaltum, ii. 142
Retoris, i. 31, 351, 332
coating for, i. 34
Reverberatory furnace, i. 29
Revival of metals, ii. 20
Rhatany, extract of, ii. 132
Rheum palmatum contains oxalic acid, ii. 117
Rhodium, ii. 44
muriate of, ii. 45
analysis of ores of, ii. 266
Rochelle salt, ii. 116
mode of ascertaining
its purity, ii. 284
Rosacic acid, ii. 179
S.

Saccho-lactic, acid, ii. 180
Seffiower, ii. 130
Sal ammeniac. See Nruriate of Ammonia.
Salifiable base, i. 209
Salifying principle, i. 209
Saliza, ii 170, 171
properties of, ii. 190
component parts of, ii. 191
terminology of, i. 209, 210
analysis of, ii. 244
solubility of, in water, ii. 368 , 370
in alcohol, ii. 371
composition of, ii. 372, 373
incompatible, ii. 374
neutral, i. 209
Sandheat, i. 388
Saturation, i. 40, 48, 71
Scales of animals, ii. 217
Scarlet, solution of tin used in dyeing, ii. 68, 130
Scheele's green, ii. 81
Sebacic acid, ii. 181, 182
Secretions, animal, ii. 189, 190, 197, 200, 203
Sedative salt. See Boracic Acid.
Seignette's salt, ii. 116
mode of ascertaining its purity, ii. 284
Semi-metals, ii. 11
Separator, i. 331
Serosity, ii. 185
Serum, ii. 184
Sheathing of ships, i. 155
Shells, ii. 214, 215
Silex, attempts to decompose, i. 200 method of obtaining, i. 199
properties of, i. 200
Silicated alkali, i. 200
Silicium, i. 201
Silk, sulphurous acid gas whitens, i. 247
properties of, ii. 218
method of removing stains on, ii. 315

Silver, properties of, ii. 35
tarnishing of, ii. 35, 39
sulphate of, ii. 35
its use as a test,
ii. 228
nitrate of, ii. 36,37 its use as a test, ii. \(228,271,272\)
mode of ascertaining its purity, ii. 288
subnitrate of, ii. 36
muriate of, ii. 36
purification of, ii. 36,70
fulminating compounds of, ii. 38
solvent of, ii. 39
alloys of, ii. 39
standard, ii. 39
use of, as a test, ii. 227

Silver, acetate of, its use as a test, ii. 228
analysis of ores of, ii. 262
Similor, ii. 54
Sinews, ii. 216
Skin, ii. 217
Smalts, ii. 85
Smells, destroyed by charcoal, i. 214
Soap, ii. 118
dissolved in alcohol, as a test, ii. 234

Soda, preparation of, i. 174
properties of, i. 174
analysis of, i. 174
component parts of, i. 185
never free from water, ii. 322
carbonate of, i. 226
sub-carbonate of, i. 226-its use as a test, ii. 226 -mode of ascertaining its purity, ii. 280
sulphate of, i. 249-mode of ascertaining its purity, ii. 282
sulphite of, i. 258
hydroguretted sulphuret of, i. 266
nitrate of, i. 289
muriate of, i. 300 ; ii. 175 -decomposed by oxides of lead, ii. 72-mode of ascertaining its purity, ii. 282
hyper-oxymuriate of, i. 313
phosphate of, i. 320
as a test, ii. 233
borate of, ii. 86 -mode of as-
certaining its purity, ii. 284
oxalate of, ii. 105
super-oxalate of, ii. 105
citrate of, ii. 109
acetate of, ii. 160
use of, as a test, ii. 226
succinate of, as a test, ii. 232
SSodium, i. 177, 183
mode of procuring, i. 175
properties of, i. 183
sulphuret of, i. 184
phosphuret of, i. 184
amalgam of, i. 184
nature of, examined, ii. 321, 323 note
Soils, analysis of, ii. 298
improvement of, ii. 310, 313
sterile, ii. 311
fertile, ii. 311
proper for bulbous roots and trees, ii. 312
apparatus for the analysis of, ii. 313

Solar phosphori, i. 113, 251, 260
Solders, ii. 28, 68, 76.

Solids, expansion of, by heat, i. 181 absorb heat in becoming liquid, i. 97
melting points of, ii. 354, 376
point of volatilization of some, ii. 355
expansion of, by heat, ii. 361
Solution, i. 40, 149
experimental illustrations of, i. 68
effects a very minute division of̂ bodies, i. 69
generally produces cold, \(i\). 101, 150
heat sometimes evolved in, i. 150

Solvent, what, i. 40
Sorrel, salt of, ii. 105, 117
Soup, portable, ii. 163
Spar, calcareous, i. 231
ponderous, i. 251
Specific Gravity. See Gravity Specific.
Speculum metal, ii. 54
Speltre, i. 136 note
Spermaceti, ii. 177
Spirit, proof, ii. 147
of wine, ii. 146, 291
Springs, metallic, ii. 11
Stains, method of removing, ii. 314, 315
Stalactites, i. 231
Starch, ii. 124
Steam, formed at the bottom of water, i. 101
has the same temperature as boiling water, i. 102
latent heat of, i. 102, 105, 107
specific gravity of, i. 105
equal weights of, contain \(e^{-}\) qual quantities of caloric, i. 107
applicable to the purpose of heating bodies, i. 108
force of, at different temperatures, ii. 356, 357, 358
Steel, method of gilding, ii. 32
a compound of iron and carbon, ii. 63
cast, ii. 63
Still, common, i. 31
Stones, analysis of, ii. 24.6
substances that may be ex-
pected in, and means of sepa-
rating, ii. 259 .
Strontites, analysis of, i. 196 properties of, i. 196
base of, i. 197
carbonate of, i. 230
sulphate of, i. 252
nitrate of, i. 291
muriate of, i. 303

Strontites, hyper-oxymuriate of, i. Sulphate of zircon, i. \(25 \%\) 314
oxalate and super-oxalate of, ii. 106
acetate of, ii. 161
use of, as a test, ii. 227
Strontium, j. 197
Subborate of soda, i. 327 ; ii. 86, 284
Sub-carbonate of ammonia, i. 226
lime, i. 230
magnesia, i. 232
potash, i. 222
soda, i. 226
Suber, ii. 139
Suberic-acid, mode of obtaining, ii. 139
properties of, ii. 139
Sublimate, corrosive, ii. 43
Sublimation, i. 240
Sub-muriate of copper, ii. 53
mercury, ii. 43
Sub-nitrate of mercury, ii. 41 silver, ii. 36
Sub-sulphate of copper, ii. 51
tin, ii. 66
Succinate of ammonia, as a test, ii. 235
iron, ii. 61
soda, as a test, ii. 232
Succinic acid, ii. 122
mode of ascertaining the purity of, ii. 279
Sugar, ii. 101
preparation of, ii. 101
obtained from several vegetables, ii. 102
properties of, ii. 102, 103
animal, ii. 176, 18u, 199
of lead, ii. 71, 289
Sulphates, tests of, ii. 235, 236
Sulphate of alumine, i. 255 ; ii. 235, 284
ammonia, i. 250
ammonia and magnesia, i. 254
antimony, ii. 78
barytes, i. 250
bismuth, ii. 75
copper, ii. 51
glucine, i. 256
iron, ii. 56, 223, 285
lead, ii. 70
lime, i. 253
magnesia, i. 254 ; ii. 284
mercury, ii. 41
potash, i. 249 ; ii. 282
silver, ii. 35,228
soda, i. 249 ; ii. 282
strontites, i. 252
tin, ii. 66
yttria, i. 257 .
zinc, ii. 74

Sulphites, method of obtaining, i. 257
properties of, i. 258
Sulphite of alumine, i. 259
ammonia, i. 259
barytes, i. 259
lime, i. 259
magnesia, i. 259
potash, i. 258
soda, i 258
Sulphur, i. 238
compounds of, i. 238, 239, 259, 261
properties of, i. 239
preparation of, for taking impt cssions, i. 239
combination of alcohol with, i. 240
contains hydrogen, i. 240
contains oxygen, i. 241
combastion of, i. 242
combination of alkalis with, i. 259
phosphuret of, i. 321
combination of metals with, ii. 22
balsam of, ii. 119
analysis of, ii. 260
nature of, examined, ii. 325
hydroguretted, i. 265
Sulphuret of potassium, i. 181
sodium, i. 184
lime, i. 260
iron, ii. 61, 62
lead, ii. 72
antimony, ii. 77
arscnic, ii. 81
manganese, ii. 87
molybdena, ii. 89
Sulphurets, alkaline, mode of preparing, i. 260-general properties of, i. 260exist only in a dry state, i. 265-use of, as tests, ii. 235-tests of, ii. 236
metallic, ii. 22
of mercury, ii. 40
Sulphuretted hydrogen combines with oxides, ii. 22-with metals, ii. 24-test of lead, ii. 72-test of arsenic, ii. 235
liydrogen gas, quantity ty of absorbed by water, i. 149-modes of procuring, i. 261properties of, i. 261 -with alkalis and earths forms hydrosulphurets, i. 262-

Sulphuretted hydrogen gas, tests of, ii. 236-nature of, ii. 326
hydrogen liquid, i. 267 oxides, ii. 22, 74
Sulphuric acid, i. 242-component parts of, i. 242-purification of, i. 244-decomposition of, i. 245, 246heat and light evolved on its addition to magnesia, i. 254-manufacture of, i. 286-in its pure state, elastic, i. 330 -use of, as a test, ii. 224 -tests of, ii. 235-treatment of persons, who have swallowed, ii. 277 -method of ascertaining the purity of, ii. 277 -glacial, i. 247; ii. 55 -real, quantity of, in acid of different densities, ii. 350
Sulphurized alcohol, i. 240
Sulphurous acid, formation of, i. 246properties of, i. 246component parts of, i. 248-tests of, ii. 235waters, i. 261
Sulphur vivum, i. 240
Sumach, ii. 131
Sun-beams consist of three kinds of rays, i. 112
Super-acetate of lead, ii. 71, 289
Super-oxalate of potash, ii. 105
soda, ii. 105
Super-sulphate of mercury, ii. 40, 41 potash, i. 249
Super-sulphuret of iron, ii. 62
lead, ii. 72
Super-sulphuretted hydrogen, i. 264
Super-tartrate of potash, ii. 115mode of ascertaining its purity, ii. 283
Supporters of combustion, i. 209; ii. 15
Sympathetic inks, ii. 53, 58, 59, 72, 84
Synovia, ii. 202
T.

Tallow, ii. 178
Tan, from galls, ii. 132
how obtained, ii. 132
properties of, ii, 133
artificial formation of, iu. 134
Tannate of iron, ii. 59, 133
Tannin, ii. 132
Tantalium the same with columbium, ii. 29 note, 93

VOL, II.
56

Tar, mineral, ii. 141
Tartar, cream of, ii. 112, 115
Tartaric acid, mode of obtaining, ii.
112
properties of, ii. 114
may be converted into oxalic and acetic, ii. 114
analysis of, ii. 115
combinations, ii. 115
mode of ascertaining the purity of, ii. 279
Tartrate of potash, ii. 115-mode of ascertaining its purity, ii. 283-and soda, ii. 116-mode of ascertaining its purity, ii. 284
of tin, ii. 68
Tears, ii. 200
Teeth, ii. 214
Telluretted hydrogen gas, ii. 324
Tellurium, ii. 79
analysis of ores of, ii. 266
compound of hydrogen
with, ii. 324
alloy of potassium with, ii. 324

Temperature, influence of, on chemical affinity, i. 57, 69
what, i. 75
method of ascertaining, i. 75
change of, produced by solution, i. 101, 150, 151
Tenacity of different metals, ii. 332
Tendons, ii. 210
Terra japonica, ii. 98
Tests, ii. 221
Thermometer, i. 75
its construction, i. 82, 85
its rise nearly in the ratio of the increase of heat, i. 88
Mr. Dalton's scale of, i. 89
rule for reducing gases to a given height of the, ii. 344
Mr. Dalton's new scale compared with Fahrenheit's, ii. 353
air, i. 331
differential, i. 8 s
Thermometers, various, correspondence between, ii. 351
Tin, precipitation of gold by, ii. 31, 32 muriate of, best test of platina, ii. 34

Tin, properties of, ii. 66
oxides of, ii. 66
amalgam of, ii. 66
sulphate of, ii. 66
sub-sulphate of, ii. 66
nitrate of, ii. 67 .
muriate of, ii. 67
oxymuriate of, ii. 67
nitro-muriate of, ii. 68
acetate of, ii. 68
tartrate of, ii. 68
sulphuretted oxide of, ii. 68
alloys of, ii. 68
action of arsenic acid on, ii. 82
analysis of ores of, ii. 263
Tincal, i. 327
Tinning, wet, ii. 65
Titanium, ii. 91
analysis of ores of, ii. 266
Tombac, ii. 54
'Treacle, ii. 101
Tube of safety, i. 33
Tubes, long or crooked, joint for uniting, i. 335
Tungsten, mode of obtaining, ii. 90
characters of, ii. 91
oxides of, ii. 91
analysis of ores of, ii. 265
Tungstic acid, mode of obtaining, ii. 90, 91 , properties of, ii. 91
Tungratate of lime, 'ii. 90
Turbith mineral, ii. 41-mode of ascertaining its purity, ii. 288
Turf, ii. 143
T'urmeric, as a dyc, ii. 131
paper and tincture, as tests, ii. 223
Turpentine, oil of, convertal into a kiud of camphor, ii. 121
Tutenas, ii. 54.
Typer, metal, ii. 79
Ulmin, ii. 145
Uranium, ii. 91
analysis of otes of̂, ii. 265
Urea, method of obtaining, ii. 173 . 205
properties of, ii. 173
alters the form of some muriates. ii. 175
elements of, ii. 175
Uric acid, ii. 178
Urine, sugar found in, ii. 176
gravel in, ii. 178 calculi in, ii. 178, 207
lateritious sediment of, ii. 179
analysis of, ii. 203
putrefaction of, ii. 206

Urine, changes of, in diseases, ii. 207 of different animals, ii. 207 \(\forall \mathrm{V}\).
Vapour, caloric the cause of, i. 101
Varnishes, ii. 122, 142
Vegetable extrat, 3 i .97 substances, .ii. 96-result of the spontaneous decomposition of, ii. 146
Vegetables, growth of, affected by carbonic acid, i. 221
proxinate principles of, i. 96

Verdesris, ii. 53
mode of ascertaining the purity of, ii. 289
distilled, ii. 290
Verditer, ii. 52
Vermilion, ii. 44
Vinesar, ii. 157
purification of, ii. 158
distilled. See Acetous Acid. radical. See Acetic Acid.
Vinous fermentation, ii. 145
Violets, syrup of, as a test, ii. 222,223 -test of its genuineness, ii. 222-its colour restored by oxygen, ii. 224, note pickle of, ii. 224, note
Vitriol, blue. See Copper, sulphate of. green. See Tron, sulphate of. white See Zinc, sulphate of.
Volta's eudiometer, i. 138, 335
pile, i. 152, 169
W.

Water, supposed not to conduct heat, 1. 96
is a slow conductor, i. 97
quantity of coal required to evaporate, i. 105
composition of, i. 143
analysis of, i. 146
properties and effects of, i. 148
contains air, i. 148
quantities of gases absorbed by, i, 149
contained in the atmosphere in the driest weather, i. 149
change of temperature produced by solution of bodies in, i. 150
during solution, gives out air, and has its bulk altercd, i. 150
has its solvent power increased, by diminishing the pressure, i. 151
expands by cold, i. 152
decomposed by galvanism, i. 161


This book must not be taken from the Library building 8-
```


[^0]: Annales de Chimie, lxix. 92

[^1]: * Annales
 \dagger Note to

[^2]: .* Berthollet, Annales de Chimie, xxv, 256.

[^3]: * It has been lately suggested by Hassenfratz, and with some probability, that iron, which is manufactured with wood charcoal, owes much of its superiority to combination with notassium. (Nicholson's Journal, xxv. 51.)

[^4]: .

[^5]: * By acidula are to be understood salts with an excess of acid, such as

[^6]: * Nicholscn's Journal; 4to. v. 7.

[^7]: is emitted

[^8]: * Fourcroy, Systeme, 4to. r. 26 S . + Nicholson's Journal, xiv. 147.

[^9]: * Pssays, p. $26{ }^{-}$

[^10]: * Directions for the assay of potash, by the intervention of nitrate of strontites, may be found in the 41st volume of the Annales de Chimie, page 113.

[^11]: * Nicholson's Journal, xxiv; 384. † Annales de Chimie, 1xxi. 41.

[^12]: * Erroneously printed in the original 49.19.
 \dagger Innales de Chimie, 1xxi. 254; Nicholson's Journal, xxvi. 161, 300.

[^13]: * See vol. i. page 267.

[^14]: * Sorne grod remarks on this stibject by Berthollet, jun. may be consulted in Nicholson's Journal, xxv. 154.
 \dagger Annates de Chimie, lxxi. 189; or Nicholson's Journal, xxvi. 102.

[^15]: * Nicholson's Journal xxvi. 99; or .annales de Chime, lxxi.

[^16]: ＊Of temperature 190° Fahrenheit，and force $=30$ inches of mercury．
 \dagger Of temperature 100° Fahrenheit，and force $=30$ inches of mercury．

[^17]: * Per Chaussier 0.7980.
 \dagger Per Lovitz 0.6320.

[^18]: *Chaussier's alcohol had the specific gravity of 0.798 ; and Gilpin's that of 0.825 . The tables of Gilpin are to be found in the Philosondical Transactions for 1794.

